
 David McGoveran

 Alternative Technologies

 13150 Highway 9, Suite 123

 Boulder Creek, CA 95006

 Telephone: 408/338-4621

 www.AlternativeTech.com

 DESIGNING
THE PHYSICAL DATABASE

for
SCALABILITY

A UNIFORM, METHODICAL APPROACH

Data Warehouse Summit

Phoenix

Friday, December 11, 1998

9:00 A.M. - 5:00 P.M.

C. 1998, Alternative Technologies, All Rights Reserved Page 2

BEFORE YOU LEAVE…

PLEASE FILL OUT YOUR
EVALUATIONS.

Thank you!

C. 1998, Alternative Technologies, All Rights Reserved Page 3

ASSUMED BACKGROUND

• You Understand The Relational Model

– THE BASIC CONCEPTS

– THE DATE-MCGOVERAN DEFINITIONS

» RELATIONS AND DATABASES

» RELATION PREDICATES

» INTEGRITY RULES

– DATA INDEPENDENCE

» DEFINITION AND IMPORTANCE

C. 1998, Alternative Technologies, All Rights Reserved Page 4

ASSUMED BACKGROUND

• You Understand Logical Design

– DEPENDENCIES

– NORMALIZATION

– THE DATABASE DESIGN PRINCIPLES

» THE DATABASE DESIGN PRINCIPLE OF ORTHOGONALITY
(MCGOVERAN-DATE)

» THE DATABASE DESIGN PRINCIPLE OF COMPLETENESS
(MCGOVERAN)

» THE DATABASE DESIGN PRINCIPLE OF MINIMALITY
(MCGOVERAN)

– IDENTIFYING PROPER COLLECTIONS OF TABLES

– GUARANTEEING VIEW UPDATABILITY

C. 1998, Alternative Technologies, All Rights Reserved Page 5

THE APPROACH

• Establish Requirements

– FIXED

» KNOWN INITIAL SUBJECT MATTER

» CORRECTNESS

– VARIABLE

» PERFORMANCE

» LOAD

» ADDITIONAL SUBJECT MATTER

• Design Goals

– MEET FIXED REQUIREMENTS

– HAVE FLEXIBILITY FOR VARIABLE REQUIREMENTS

C. 1998, Alternative Technologies, All Rights Reserved Page 6

THE APPROACH

• Technique for Addressing Fixed

– MEET FIXED REQUIREMENTS THROUGH LOGICAL DESIGN

» INSURE CORRECTNESS

– SEPARATE FIXED FROM VARIABLE THROUGH DATA
INDEPENDENCE

» PERMIT A LARGE CLASS OF PHYSICAL CHANGES

• APPLICATIONS ACCESS ONLY THE LOGICAL SCHEMA

• TOOLS & APPLICATIONS THAT CREATE OR ACCESS THE PHYSICAL
SCHEMA LIMIT SCALABIILTY!

» ACCOMMODATE ADDITIONAL SUBJECT MATTER

• PROVIDES FUNCTIONAL SCALABILITY!

ADDRESSING FIXED THROUGH LOGICAL IS ASSUMED
ALREADY DONE IN THIS COURSE

C. 1998, Alternative Technologies, All Rights Reserved Page 7

THE APPROACH

• Technique for Addressing Variables

– ADDRESS VARIABLE GOALS

» MONITOR / ANTICIPATE LOAD PROFILE CHANGES

» SELECT / IMPLEMENT BEST PHYSICAL SOLUTION

» ACCOMMODATE ADDITIONAL SUBJECT MATTER

• EXTEND THE LOGICAL MODEL

• PROPAGATE LOGICAL CHANGES INTO PHYSICAL

PHYSICAL DESIGN IS A NEVER ENDING ITERATIVE PROCESS . . .

C. 1998, Alternative Technologies, All Rights Reserved Page 8

OUTLINE

• The Approach In Overview

• Scalability

– DEFINITION AND GENERAL GOALS

– ENABLING PLATFORM ARCHITECTURE SCALE UP

• Data Independence

– WHAT IS LOGICAL AND WHAT IS PHYSICAL

– PHYSICAL DERIVED FROM LOGICAL

» KEEPING THEM CONSISTENT

– THE VALUE OF DATA INDEPENDENCE

– NORMALIZATION VS. DENORMALIZATION

– STAR SCHEMAS

C. 1998, Alternative Technologies, All Rights Reserved Page 9

OUTLINE

• Load Profiles

– SOURCES OF LOAD

» FEEDS, REFRESH, LOAD / RELOAD

» BACKUP, EXTRACTS, STANDARD REPORTS, ADHOC QUERY,
MDD / OLAP

» GROWING USER COMMUNITY

– MEASURING AND SAMPLING

– MODELING

– HANDLING VARIANCE

• Getting the Most Out of the Optimizer

– APPLICATION, INDEX, TRANSACTION DESIGN PRINCIPLES

C. 1998, Alternative Technologies, All Rights Reserved Page 10

OUTLINE

• Denormalization

• Missing Information
– OPTIMIZING FOR SPACE AND PERFORMANCE

• Optimal Storage Management
– DIMENSIONAL SCHEMAS

– PRE-AGGREGATION AND SUMMARY TABLES

– TABLE PARTITIONING

» NUMBER, SIZE, AND PARTITIONING METHOD

– REPLICATION AND OTHER FORMS OF REDUNDANCY

» WHEN AND HOW TO USE REPLICATION

• Getting the Most Out of Parallelism
– TIPS AND TECHNIQUES THROUGHOUT

C. 1998, Alternative Technologies, All Rights Reserved Page 11

WHERE WE ARE

The Approach In Overview

• Scalability

• Data Independence

• Load Profiles

• Getting the Most Out of the Optimizer

• Denormalization

• Handling Missing Information

• Optimal Storage Management

C. 1998, Alternative Technologies, All Rights Reserved Page 12

PART I

SCALABILITY

C. 1998, Alternative Technologies, All Rights Reserved Page 13

SCALABILITY
 Definition

SCALABILITY IS:
– SCALEUP or SPEEDUP (see slides which follow)

– WITH RESPECT TO A SPECIFIC RESOURCE MIX

» AMOUNT OF MEMORY, NUMBER / SIZE OF STORAGE UNITS,
NUMBER OF CPUs, NUMBER OF NODES, et cetera.

– OVER A SPECIFIED RANGE

– FOR A PARTICULAR WORKLOAD

» NUMBER OF USERS, DB SIZE, TRANSACTION RATE,
TRANSACTION COMPLEXITY or PROFILE

• Conceptual Definition of Speed Up

MORE RESOURCES  BETTER PERFORMANCE, SAME WORKLOAD

• Conceptual Definition of Scale Up

MORE RESOURCES  SAME PERFORMANCE, BIGGER WORKLOAD

C. 1998, Alternative Technologies, All Rights Reserved Page 14

SPEEDUP
DEFINITION

• Fixed Workload, More Resources
– IMPROVE THROUGHPUT (COMPLETE WORK FASTER)

– IMPROVE RESPONSE TIME (ENABLE USER MORE QUICKLY)

• W = Work Rate Possible With An Available Resource
– W1 WITH RESOURCE R

– W2 WITH RESOURCE 2 * R

– KEEPING OTHER FACTORS CONSTANT

– MEASURED OVER SAME TIME PERIOD

• P = Percent Speedup
– WITH RESPECT TO THE PARTICULAR RESOURCE(S)

– OVER THE RANGE R  2R

P = (W2 - W1) * 100 / W1

C. 1998, Alternative Technologies, All Rights Reserved Page 15

SCALEUP
DEFINITION

• Fixed Elapsed Time, More Resources
– INCREASE WORKLOAD (MORE TASKS COMPLETED)

– IMPROVE THROUGHPUT (FINISH SAME WORK SOONER)

– IMPROVE CONCURRENCY

• Resource Required to Perform Fixed Amount of Work
– R1 WITH LOAD L

– R2 WITH LOAD 2 * L

– KEEPING OTHER FACTORS CONSTANT

– MEASURED OVER SAME TIME PERIOD

• S = Percent Scaleup
– WITH RESPECT TO THE RESOURCE

– OVER THE RANGE L  2L

S = (R2 - R1) * 100 / R1

C. 1998, Alternative Technologies, All Rights Reserved Page 16

SCALABILITY
GENERAL GOALS

The Essence of Scalability is Independence

 of. . .
– COMPONENTS BY FUNCTION AND TASK INSTANCE

– RESOURCES ASSIGNED TO INDEPENDENT COMPONENTS

• Non-Independence Manifests As. . .
– RESOURCE CONTENTION (WAIT TIME)

– PROCESSING ANOMALIES AND MAINTENANCE SIDE EFFECTS

– INABILITY TO EXPLAIN THE ARCHITECTURE

– INABILITY TO EXPLAIN THE CAUSE OF SYMPTONS

Avoid These By Building-in Independence

C. 1998, Alternative Technologies, All Rights Reserved Page 17

WHERE WE ARE

The Approach In Overview

Scalability

• Data Independence

• Load Profiles

• Getting the Most Out of the Optimizer

• Denormalization

• Handling Missing Information

• Optimal Storage Management

C. 1998, Alternative Technologies, All Rights Reserved Page 18

PART II

DATA INDEPENDENCE

C. 1998, Alternative Technologies, All Rights Reserved Page 19

MULTIPLE DATABASE MODELS

• What is a relational database?

– A COLLECTION OF FACTS: NOT A COLLECTION OF DATA!

– A FACT IS A TESTABLE RELATIONSHIP AMONG DATA

• How many maintain both logical and physical data
models?

• How many know the distinction?

• Who knows the value of the logical model?

• Who knows the value of the physical model?

• How many maintain a map between them?

C. 1998, Alternative Technologies, All Rights Reserved Page 20

MULTIPLE DATABASE MODELS

• Why have levels of abstraction?

– EASE / SPEED OF DESIGN AND DEVELOPMENT

– EASE OF MAINTENANCE

– CORRECTNESS

– SMALLER, MORE FLEXIBLE SYSTEMS

• Conceptual

– A VIEW OF THE LOGICAL MODEL

– PRESENTS THE BUSINESS OR CONCEPTUAL VIEW

– ADDRESSES THE USER’S OR APPLICATIONS VIEW(S)

» BOTH PROCESS (BUSINESS TRANSACTIONS) AND DATA

– CRUCIAL TO EASE OF USE

C. 1998, Alternative Technologies, All Rights Reserved Page 21

MULTIPLE DATABASE MODELS

• Logical

– GUARANTEES ACCESS (RELATIONAL CORRECTNESS AND
COMPLETENESS)

» BOTH PROCESS (PERMISSIBLE STATE TRANSITIONS)
AND DATA

» A SUCCESSFUL TRANSACTION IS A PERMISSIBLE
STATE TRANSITION (TAKES DATABASE FROM ONE
CONSISTENT STATE TO ANOTHER)

• Physical

– ADDRESSES EFFICIENCY (PERFORMANCE AND STORAGE)

» BOTH PROCESS (ACCESS METHODS) AND DATA

– MUST BE A VIEW OF THE LOGICAL MODEL (WHY?)

C. 1998, Alternative Technologies, All Rights Reserved Page 22

LAYERED DESIGN

Logical Derived Views

Logical Base View

Physical View

Physical Implementation

C. 1998, Alternative Technologies, All Rights Reserved Page 23

DATA INDEPENDENCE

• Logical Mostly Independent of Physical
– CAN HIDE STORAGE ALLOCATION AND PERFORMANCE

– PHYSICAL PLATFORM ISSUES NEED BE KNOWN ONLY TO DBMS

– SQL ENTANGLES THESE, ESPECIALLY AT TABLE CREATION

• Applications Access Only the Conceptual or Logical
Schemas

Result?

A SCALABLE DESIGN!
– CAN CHANGE THE APPLICATION CODE AND THE PHYSICAL

SCHEMA INDEPENDENTLY!

– ADDRESS INVARIANT AND VARIABLE REQUIREMENTS
INDEPENDENTLY

– ENABLES SCALABLE PLATFORM ARCHITECTURE CHANGES

C. 1998, Alternative Technologies, All Rights Reserved Page 24

WHERE WE ARE

The Approach In Overview

Scalability

Data Independence

• Load Profiles

• Getting the Most Out of the Optimizer

• Denormalization

• Handling Missing Information

• Optimal Storage Management

C. 1998, Alternative Technologies, All Rights Reserved Page 25

PART III

LOAD PROFILES

C. 1998, Alternative Technologies, All Rights Reserved Page 26

LOAD
WHAT IS IT?

• Database Load Has Many Factors
– WHAT IS BEING DONE?

» INPUTS - SEARCH ARGUMENTS (MORE LATER)

» OUTPUTS - DATA RETRIEVAL AND MODIFICATIONS

– HOW IS IT BEING DONE?

» I/O AND MEMORY REQUIREMENTS

» PARTICULAR ALGORITHMS (ACCESS METHODS)

– TIME DEPENDENCIES AND FLUCTUATIONS

– CONCURRENCY

– IMPORTANCE

Goal:

Characterize Load via a Uniform, Simple Procedure

C. 1998, Alternative Technologies, All Rights Reserved Page 27

LOAD PROFILES
WHY AND HOW

• Necessary for Many Physical Design Decisions

• Load Profiles are Dynamic
– AN ON-GOING PROCESS IN THE FACE OF LITTLE INFO

– VARIANCE OR “RANDOM” FLUCTUATIONS

– CYCLICAL (DAILY, WEEKLY, MONTHLY, YEARLY)

– TREND (FOR EXAMPLE, GROWTH)

• Actual Load Profiles are often Complex
– REDUCE COMPLEXITY BY REDUCING DETAIL

• Two Methods
– MEASURE

– MODEL

C. 1998, Alternative Technologies, All Rights Reserved Page 28

LOAD PROFILES
MEASUREMENT

• DBMS Instrumentation
– ALL ACCESS RESTRICTED TO STORED PROCEDURES

– CREATE MULTIPLE LOGGING TABLES

– INSERT TRACE VIA NESTED ASYNCH PROCEDURE

» ROLLUP VIA PERIODIC SWEEPING (CRON JOB, TRIGGER,
etc.)

• BEGIN: UPDATE SUM-STATS… WHERE MODULO(TIME) = CONSTANT:
DELETE DETAIL-STATS: END

» ALTERNATIVELY ROLLUP VIA MERGE REPLICATION

– WHAT ABOUT AD-HOC QUERIES?

» MOST FOLLOW A COMMON PATTERN
• PARAMETERIZE AS STORED PROCEDURE AND SAVE

• LET USERS SELECT BEFORE CREATING NEW QUERY

» AT LEAST JOINS AND CONDITIONS ARE COMMON
• PRESENT AS “BUSINESS OBJECTS” AND LOG USE

C. 1998, Alternative Technologies, All Rights Reserved Page 29

LOAD PROFILES
MEASUREMENT

• Monitoring or Trace Tools
– SNIFFERS: TELERAN AND OTHERS

• Application Instrumentation
– USER-WRITTEN

» LOG TO IN-MEMORY “FILE”

» COPY PERIODICALLY TO DATABASE

– VENDOR-WRITTEN

» APPLICATION SERVER ENVIRONMENTS

» CHARGE-BACK ACCOUNTING

» TRACE / AUDIT FUNCTIONALITY

• Reduce Complexity via Sampling Where Possible
– WHERE {conditions} AND RANDOM(min, max) /range) < sample-

rate

C. 1998, Alternative Technologies, All Rights Reserved Page 30

LOAD PROFILES
MODELING

Use Artificial Transactions That Represent the Typical
Usage

 Identify Known Tasks
– DEFINE VIA TRANSACTIONS

 Prioritize (P) Transactions by Relative Business
Importance
– USE A SIMPLE RANKING AND THEN NUMBER

– ALTERNATIVELY ASSIGN A SUBJECTIVE VALUE

 Quantify Transaction Volume (V)
– FREQUENCY, TIME DISTRIBUTION, I/O COST, ACCESS ORDER

» DATA ACCESS ORDER IS CRUCIAL FOR CONCURRENCY AND
PARALLELISM

– ESTIMATE VARIANCE FOR EACH

C. 1998, Alternative Technologies, All Rights Reserved Page 31

LOAD PROFILES
MODELING

• Modeling: Model Transactions

– CREATE A MODEL TRANSACTION FOR EACH REAL
TRANSACTION

– ELIMINATE REDUNDANT MODEL TRANSACTIONS

» MERGE TIME DISTRIBUTION AND VOLUME REQUIREMENTS
OF ORIGINAL TRANSACTIONS

– THESE CHARACTERIZE (OR PROFILE) THE LOAD

• Model Databases: A Caution

– DON’T ASSUME RESULTS ON A “SCALED DOWN” DATABASE
WILL SCALE UP!

» I/O AND BUFFER USE ARE NON-LINEAR

– CALCULATED COSTS ARE USUALLY MORE ACCURATE

C. 1998, Alternative Technologies, All Rights Reserved Page 32

LOAD PROFILES
MODELING

• Identify Access Patterns
– EACH TRANSACTION X[k] HAS QUERIES Q[jk] HAS

PARTICIPATING TABLES T[ijk]

– MEASURE OR ESTIMATE TRANSACTION VOLUMES V[k]

» AVERAGE, PEAK, DISTRIBUTION

» NOTE: CRUD AND VOLUMETRIC ANALYSIS ARE HELPFUL

– WEIGHT TRANSACTIONS X[k] BY IMPORTANCE P[k]

• Tune Individual Queries
– FOCUS ON MOST IMPORTANT QUERIES: TOP 20% V[k] * P[k]

– USE THE “EXPLAIN” UTILITY ON EACH QUERY

» IDENTIFY BEST ACCESS METHODS M[ijk] AND “DRIVING”
KEYS K[ijk] FOR EACH TABLE T[ijk] ACCESSED

NOTE: THESE ARE CANDIDATE PARTITIONING KEYS FOR
PARTICIPATING TABLES

C. 1998, Alternative Technologies, All Rights Reserved Page 33

WHERE WE ARE

The Approach In Overview

Scalability

Data Independence

Load Profiles

• Getting the Most Out of the Optimizer

• Denormalization

• Handling Missing Information

• Optimal Storage Management

C. 1998, Alternative Technologies, All Rights Reserved Page 34

PART IV

GETTING THE MOST OUT
OF THE OPTIMIZER

C. 1998, Alternative Technologies, All Rights Reserved Page 35

APPLICATION PRINCIPLES

• Set Processing
– AVOID ROW-AT-A-TIME LOOPS

» SELECT EMPNO FROM EMP
• GET ARRAY OF EMPLOYEE NUMBERS

» BEGIN LOOP: CURNO = EMPNO[index]

» SELECT EMPNO, ESAL FROM EMP WHERE EMPNO = CURNO

» NEW-ESAL = ESAL * 1.1

» UPDATE EMP SET ESAL = NEW-ESAL WHERE EMNO =
CURNO

» NEXT EMPNO

– BETTER

» UPDATE EMP SET ESAL = ESAL * 1.1

• Asynchronous Requests

C. 1998, Alternative Technologies, All Rights Reserved Page 36

APPLICATION PRINCIPLES

• Asynchronous Requests
– AVOID BLOCKING VIA BACKGROUND PROCESSING

» QUERY PROCESSING

» DATA RETRIEVAL
• MOVE DATA IN BULK TO MEMORY OR A LOCAL FILE

» DATA MODIFICATIONS
• MOVE DRIVING PARAMETERS IN BULK TO A WORK TABLE

• PROCESS VIA A SET UPDATE, SET INSERT, OR SET DELETE

– AVOID CONVERSATIONAL TRANSACTIONS

» RETRIEVE DATA ONLY IF NECESSARY

» AVOID “CONFIRMING” RETRIEVALS
• YOU CAN STORE RESULTS IN AN AUDIT TABLE

• YOU CAN ALWAYS RUN A REPORT LATER

» CONDITIONALIZE ALL TRANSACTIONS

C. 1998, Alternative Technologies, All Rights Reserved Page 37

• Understand Transaction Structure
– AN INITIAL READ PHASE

– AVOID RE-READING DATA

– A WRITE PHASE BEGINS WITH THE FIRST MODIFICATION

» INSERT, UPDATE, OR DELETE

• Minimize the Write Phase
– DATA TOUCHED

– TIME TO COMMIT

– CONSIDER PRE-READING DURING THE READ PHASE

» IMPROVE CACHE HITS DURING WRITE PHASE

• Minimize Transaction Scope
– MINIMIZE NUMBER OF ACTIONS

UNDERSTANDING TRANSACTIONS
 DESIGN ISSUES

C. 1998, Alternative Technologies, All Rights Reserved Page 38

UNDERSTANDING TRANSACTIONS
DESIGN ISSUES

• Commutative Property

– DEFINITION: ORDER INDEPENDENT

– COMPLETE INDEPENDENCE OF STATE

• Inverse Property

– PERMITS COMPENSATING TRANSACTIONS

» a.k.a. “UNDO” TRANSACTIONS

– HELPS AVOID ROLLBACK

» SEE DO’S AND DON’TS

• Ways to Avoid Long Running Transactions

– BOOKKEEPING

• Execute Local to Any Necessary Shared Resources

– AVOID DISTRIBUTED TRANSACTIONS

C. 1998, Alternative Technologies, All Rights Reserved Page 39

UNDERSTANDING TRANSACTIONS
DO'S AND DON'TS

• Follow Transaction Design Principles
– APPLIES TO ALL SHARED DATA RESOURCE ENVIRONMENTS

– NOT JUST A DBMS ISSUE

– JAVA OR ANY MULTI-THREADED APPLICATION

– USE SERIALIZABLE TRANSACTIONS ONLY

• Understand Your Codes Critical Sections!
– CRITICAL SECTION IF INTERRUPTION CAUSES CORRUPTION

• Deadlock and Livelock
– CAN BE ACROSS SHARED RESOURCES OF ANY TYPE

» DATA, CPUs, DISKs, MEMORY, I/O, DISTRIBUTED COMPONENTS, . . .

• Avoid Rollback
– VERY COSTLY AND CREATES RESOURCE CONTENTION

– ROLLBACK ONLY ON UNAVOIDABLE PHYSICAL ERROR

C. 1998, Alternative Technologies, All Rights Reserved Page 40

UNDERSTANDING TRANSACTIONS
DESIGN ISSUES

 BEGIN ONLY COMMIT!

 GOAL: MINIMIZE TIME AND DATA SCOPE

READ PHASE

WRITE

PHASE

E

X

C

L

U

I

V

E

S

H

A

R

E

D

C. 1998, Alternative Technologies, All Rights Reserved Page 41

TRANSACTION DESIGN
CONFLICT ANALYSIS

• Identify Transactions That Can Interfere

• Why?

– SCHEDULE TRANSACTIONS AND REDUCE CONTENTION

» AVOID SUBMITTING TWO OR MORE TRANSACTIONS THAT
REQUIRE LOCKING TO GUARANTEE ISOLATION

» UNFORTUNATELY, YOU MUST DO THE SCHEDULING
YOURSELF.

– INCREASE RESPONSE TIME AND THROUGHPUT

C. 1998, Alternative Technologies, All Rights Reserved Page 42

TRANSACTION DESIGN
CONFLICT ANALYSIS

Two Transactions Cannot Interfere If:

– THEY DON'T TOUCH THE SAME DATA

– THEY ARE READ ONLY

– THEY COMMUTE

OR

– THEY DON'T RUN AT THE SAME TIME

C. 1998, Alternative Technologies, All Rights Reserved Page 43

CONFLICT ANALYSIS
A DATABASE EXAMPLE

 Which pairs of the following can interfere?

 UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE
SNAME = ‘OLD_CO_NAME’ AND CITY = ‘NEW YORK’

 UPDATE SUPPLIERS SET SNAME = ‘OLD_CO_NAME’ WHERE
SNAME = ‘NEW_CO_NAME’ AND CITY = ‘NEW YORK’

 UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE
SNAME = ‘OLD_CO_NAME’ AND CITY <> ‘NEW YORK’

 UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE
SNAME = ‘OLD_CO_NAME’ OR CITY <> ‘NEW YORK’

• What level of transaction isolation enforcement is required?

• What is the effect of existence or non-existence of indexes?

C. 1998, Alternative Technologies, All Rights Reserved Page 44

QUERY PRINCIPLES

• Make Each Query Smart!

• Minimize Amount of Data Accessed

• Minimize Amount of Data Returned or Updated

• Divide and Conquer As Necessary

– ASK FOR WHAT YOU NEED IN ONE QUERY

» PROVIDE ALL KNOWN COLUMN RELATIONSHIPS

– FLATTEN SUBQUERIES

– AVOID AGGREGATE FUNCTIONS

– BREAK INTO ADDITIONAL QUERIES ONLY AS NECESSARY

– FINALLY, FORCE TEMPORARY DATA INTO WORK TABLES
ONLY IF NECESSARY

C. 1998, Alternative Technologies, All Rights Reserved Page 45

INDEXING PRINCIPLES

• Avoid Table Scans
– EVERY READ SUPPORTED BY AN INDEX

– EXCEPT FOR SMALL TABLES

• Myth: Indexes Slow Down Updates, Speed Up
Reads
– REALITY: SET UPDATES ALSO BENEFIT

• Concept of Simple Searchable Arguments
– A SIMPLE BOOLEAN CONDITION WITH ONE OR MORE

COLUMN REFERENCES

– column <relationship> value

– JOIN SSA: column <relationship> column

– DISJUNCT SSA: SSA {OR SSA}... where all SSAs reference a
common table.

C. 1998, Alternative Technologies, All Rights Reserved Page 46

INDEXING PRINCIPLES

Problem:

 “What is the minimum set of indexes that will cover
the SSAs?”

– FOR EVERY QUERY AND EVERY TABLE IN THAT QUERY, THERE
SHOULD BE AT LEAST ONE SSA THAT REFERENCES A COLUMN
OF THE TABLE AND IS INDEXED.

– IDEALLY, BOTH COLUMNS OF AT LEAST ONE JOIN SSA PER
JOIN IN EACH QUERY SHOULD ALSO BE INDEXED

C. 1998, Alternative Technologies, All Rights Reserved Page 47

INDEXING PRINCIPLES

Solution:
IDENTIFY ALL TABLES AND FOR EACH TABLE A LIST OF

QUERIES THAT REFERENCE THAT TABLE

IDENTIFY ALL THE DISJUNCT SSAs PER QUERY

FOR EACH TABLE

» FIND THE DISJUNCT SSA THAT APPEARS IN THE
LARGEST NUMBER OF QUERIES AND INDEX IT

» REMOVE THE NOW INDEXED QUERIES FROM THE LIST

» IF NO QUERIES REMAIN, PROCEED TO THE NEXT TABLE

» OTHERWISE ITERATE FINDING NEXT MOST FREQUENT
DISJUNCT SSA

ITERATIVELY IMPROVE INDEXES

» ADD CO-APPEARING SSAs

C. 1998, Alternative Technologies, All Rights Reserved Page 48

INDEXING PRINCIPLES

• Index Candidate Keys ... including Foreign Key
Portions
– DECLARING CONSTRAINTS MAY DO THIS FOR YOU

• B-Tree Index
– RANGES, SPECIFIC VALUES, BETWEEN, LIKES WITH FIXED

HEAD, ORDER MAY HELP ORDER BY, GROUP BY

• Bit Map Index
– DISCRETE VALUES FROM DISCRETE DOMAINS

– MAX. CARDINALITY DEPENDS ON PRODUCT

• Hybrid Bit Map
– BIT MAP WITH RANGE CAPABILITY

– LOWER STORAGE EFFICIENCY

C. 1998, Alternative Technologies, All Rights Reserved Page 49

INDEXING PRINCIPLES

• Hash Index
– DISCRETE VALUE (LISTS)

– PARALLELISM

• Function or Expression Index
– COMMON FUNCTIONS OR EXPRESSIONS IN SSAS

– CAN SIMULATE VIA INDEX ON COMPUTED COLUMNS
(TRIGGER)

• Specialized Index
– SPECIFIC TO DATA TYPE

– K-TREEE, R-TREE, T-TREE AND MANY MORE!

• Join or (Multi-table) Index
– IDEAL FOR COMMON JOINS

– “STAR INDEX” IS A SPECIAL CASE

C. 1998, Alternative Technologies, All Rights Reserved Page 50

INDEXING PRINCIPLES

• Indexes and Parallelism

– PRACTICAL SIZE LIMITED BY BUILD TIME

– PARTITIONING CAN HELP

» MAY HURT PARTIAL DATABASE RECOVERY

– BUILD

» FASTER, BUT GENERALLY NO RESTART

– SEARCH

» PARTITION AND PLACE ON A DIFFERENT DISK THAN DATA

– UPDATE

» SAME AS SEARCH, BUT CONSIDER CONTENTION

C. 1998, Alternative Technologies, All Rights Reserved Page 51

WHERE WE ARE

The Approach In Overview

Scalability

Data Independence

Load Profiles

Getting the Most Out of the Optimizer

• Denormalization

• Handling Missing Information

• Optimal Storage Management

C. 1998, Alternative Technologies, All Rights Reserved Page 52

PART V

DENORMALIZATION

C. 1998, Alternative Technologies, All Rights Reserved Page 53

PHYSICAL DATABASE DESIGN

• The Design of Storage Structures

– FOR PERFORMANCE

– WITHOUT SUBVERTING RELATIONAL CORRECTNESS!

– DON’T CONFUSE WITH DESIGN OF THE LOGICAL VIEW!

• Need Not Be Normalized If. . .

– CAN HIDE PHYSICAL DEVIATIONS FROM FROM ALL USERS

– ALL OPERATIONS MANIPULATE ONLY THAT LOGICAL VIEW

– PHYSICAL SCHEMA UPDATES NEVER INDUCE LOGICAL
ANOMALIES

C. 1998, Alternative Technologies, All Rights Reserved Page 54

PHYSICAL DATABASE DESIGN

• Method

– TREAT PHYSICAL SCHEMA AS A SET OF UPDATABLE VIEWS
DEFINED FROM THE LOGICAL SCHEMA

» NOT THE REVERSE METHOD (AS IS MORE COMMON)!

– ENFORCE PHYSICAL MULTI-TABLE CONSTRAINTS VIA
TRIGGERS AND INTEGRITY CONSTRAINTS

Remember . . .

The Golden Guarantee of Data Independence

“ALL PHYSICAL COMPLEXITY CAN BE CONCEALED VIA ACCESS
THROUGH THE LOGICAL SCHEMA”

C. 1998, Alternative Technologies, All Rights Reserved Page 55

PHYSICAL DATABASE DESIGN

• With VLDB, Physical Design Rules Change
EXAMPLE:

» COMPOUND KEYS IN VERY LARGE TABLES ARE OFTEN
REDUNDANT, WASTING LOTS OF SPACE

SOLUTION:

» REPLACE WITH SURROGATE KEYS AND A LOOKUP TABLE

EXAMPLE:

» “FACT” TABLES OFTEN CONTAIN MULTIPLE ENTITIES WITH
NULLABLE ATTRIBUTES

» CAUSES CONDITIONAL PROCESSING

SOLUTION:

» NORMALIZE AND ELIMINATE NULLS

C. 1998, Alternative Technologies, All Rights Reserved Page 56

“DENORMALIZATION”

• Examples (Potentially Bad)
– JOINED TABLES

– PARTITIONED AND REPLICATED TABLES

– REDUNDANT COLUMNS

– DERIVED COLUMNS

– EMBEDDED FOREIGN KEYS

– UNIONED ENTITIES (LEADS TO NULLS!)

– various other reasons....

• Why is this done?
– OPTIMIZING STORAGE ALLOCATION

– MINIMIZING I/O COSTS, INCLUDING JOIN I/O

– MAKING IT “EASIER” TO ACCESS RELATED INFORMATION

C. 1998, Alternative Technologies, All Rights Reserved Page 57

“DENORMALIZATION”*

• “Denormalization” (An Oxymoron!)
– A PART OF THE PHYSICAL DATABASE DESIGN ONLY.

• What is Legitimate?

– A SINGLE LOGICAL RELATION CAN BE REPRESENTED BY TWO
OR MORE PHYSICAL TABLES

» JOIN, UNION, DIFFERENCE

– MULTIPLE LOGICAL RELATIONS CAN BE REPRESENTED BY A
SINGLE PHYSICAL TABLE

» PROJECTION, RESTRICTION

C. 1998, Alternative Technologies, All Rights Reserved Page 58

PHYSICAL DATABASE DESIGN
STRIPING AND RAID

STRIPING GOAL: Balance the I/O Load
– RANDOM OR ROUND ROBIN SPREAD OF THE DATA

– ACROSS AVAILABLE CONTROLLERS AND DRIVES

– MAY BE DETRIMENTAL TO SEQUENTIAL AND RANGE
SEARCHES

• Multiple Tables Striped to One Drive or Controller
– CAN CAUSE CONTENTION

– TREAT A DRIVE AS A SHARED “DATA” RESOURCE

» PERFORM A CONFLICT ANALYSIS

» BEST IF NO CONCURRENT USERS NEED THE SAME
RESOURCE WITH RESOURCE > 40% CAPACITY

• RAID
– INTRODUCES LOSS OF PLACEMENT CONTROL

C. 1998, Alternative Technologies, All Rights Reserved Page 59

WHERE WE ARE

The Approach In Overview

Scalability

Data Independence

Load Profiles

Getting the Most Out of the Optimizer

Denormalization

• Handling Missing Information

• Optimal Storage Management

C. 1998, Alternative Technologies, All Rights Reserved Page 60

PART VI

HANDLING MISSING
INFORMATION

C. 1998, Alternative Technologies, All Rights Reserved Page 61

WHEN ARE NULLS USED?

• Conditional Data Entry
– USER (OR OTHER DATA SOURCE) HAS AN OPTIONAL DATA

FIELD

• Conditional Relationships
– SOME X’S ARE RELATED TO Y’S, BUT NOT ALL

• Conditional Properties
– SOME X’S HAVE THE ATTRIBUTE BUT NOT ALL

• Unidentified Entity Instances
– RELATIONSHIPS EXIST, BUT INSTANCE IS ABSTRACT

• Conditional Operators
– THE OPERATOR IS NON-UNIFORM

– PRODUCES NULLS TO FORCE UNIFORM OUTPUT

C. 1998, Alternative Technologies, All Rights Reserved Page 62

CONDITIONAL DATA ENTRY WITH
DEFAULTS

(HANDLING MISSING INFORMATION)

Use for Some Conditional Data Entry, Namely:

• When the Default Value Is

– MEANINGFUL OR AN APPROPRIATE GUESS!

OR

– THE BEST ESTIMATE AND OTHERWISE HARMLESS

(i.e.., NOTHING DEPENDS ON THE PARTICULAR VALUE)

CRITICAL ASSUMPTION:

ALL SUCH DATA IS INTENDED TO BE IMPROVED
UPON OVER TIME!

C. 1998, Alternative Technologies, All Rights Reserved Page 63

CONDITIONAL RELATIONSHIPS
 (HANDLING MISSING INFORMATION)

EXAMPLE: Employee-managers

EMP-MGR (EMP#, ENAME, ESAL, MGR#)

– AT LEAST ONE ROW CONTAINS A NULL FOR MGR#

– ALL EMPLOYEES ARE NOT OF THE SAME ENTITY TYPE!

• New approach: Create an associative relation

EMP (EMP#, ENAME, ESAL), MGR (MGR#, ...), M_E (EMP#, MGR#)

– ASYMMETRY PERMITS THE POSSIBILITY THAT SOME EMP# IS
NOT MANAGED BY ANY MGR#

– PHYSICALLY, I/O COST IS VERY LOW

» ESPECIALLY IF M_E IS COVERED BY AN INDEX AND
GENERALLY CACHED

C. 1998, Alternative Technologies, All Rights Reserved Page 64

CONDITIONAL RELATIONSHIPS
 (HANDLING MISSING INFORMATION)

• Recursive (Cyclic) Relations

– IMPLY MULTIPLE ROLES ARE REPRESENTED IN A SINGLE
ENTITY!

– ASSOCIATION TABLES RESOLVE ANY N-CYCLE

• Associate Relations Can Model Any Relationship!

• Solves Referential Integrity Problems (“null” FKs)

• Conditional Relationships May Imply Subsetting

– SEE CONDITIONAL PROPERTIES

C. 1998, Alternative Technologies, All Rights Reserved Page 65

TYPES AND SUBTYPES
 (HANDLING MISSING INFORMATION)

• Logically, Each Subtype Is a Separate Relation
– REMOVING A COLUMN REPRESENTS GENERALIZATION OF THE

TYPE

– NOT THE SAME OPERATION AS PROJECTION

» MAKES NO STATEMENT ABOUT THE "MISSING" COLUMN!

– CONVERSELY, A SUBTYPE IS A SPECIALIZATION

• Eliminates Need for Conditional Operations
– OUTER JOIN, OUTER UNION, etc.

– THESE CONFUSE GENERALIZATION AND PROJECTION

– MULTIPLE SELECTS SCALE BETTER

» CONSIDER MULTIPLE STREAMS, INTERSPERSED FOR
CERTAIN REPORT GENERATION TASKS

– WILL NOT ADDRESS CONDITIONAL OPERATIONS FURTHER

C. 1998, Alternative Technologies, All Rights Reserved Page 66

CONDITIONAL PROPERTIES
EXAMPLE

 (HANDLING MISSING INFORMATION)

• Suppose some employees are salaried and others
are hourly

 TRADITIONAL SCHEMA

EMP(ENUM, ENAME, ESAL, ERATE)

– BOTH ESAL AND ERATE ARE NULLABLE, BUT BOTH MAY NOT
BE NULL FOR ANY ROW

 BETTER LOGICAL SCHEMA

SALARIED_EMP(ENUM, ENAME, ESAL)

HOURLY_EMP(ENUM, ENAME, ERATE)

• PROBLEM: MODELING TYPES AND SUBTYPES

C. 1998, Alternative Technologies, All Rights Reserved Page 67

TYPES AND SUBTYPES
 (PHYSICAL DESIGN)

Solution : One Physical Table With Two Views
– DO THIS ONLY IF THE SUPERTYPE IS NEEDED

– DEFINE AN EXTENDED DOMAIN

» SPECIAL VALUE TO INDICATE AN ILLEGAL SALARY OR
ILLEGAL HOURLY RATE PHYSICALLY

» FOR THIS EXAMPLE, -1 IS NUMERIC AND EASILY EXCLUDED
• NULLS DON’T WORK WELL!

– ACCESS VIA PROJECTION / RESTRICTION VIEWS

» NEVER LET THE APPLICATION SEE COLUMNS THAT DO NOT
APPLY

» ELIMINATE NON-SALARIED ROWS FROM SALARIED_EMP

» ELIMINATE NON-HOURLY FROM HOURLY_EMP
CREATE VIEW SALARIED_EMP AS SELECT ENUM, ENAME, ESAL FROM

EMP WHERE ERATE > -1

C. 1998, Alternative Technologies, All Rights Reserved Page 68

TYPES AND SUBTYPES
 (PHYSICAL DESIGN)

Solution : Two Physical Tables and One View

– PRESUPPOSES ANY NEED TO MANIPULATE BOTH TABLES CAN
BE DONE VIA A UNION VIEW

» CREATE VIEW EMP AS SELECT ENUM, ENAME FROM
SALARIED_EMP UNION SELECT ENUM, ENAME FROM
HOURLY_EMP

» BE CAREFUL ABOUT UNION VIEW UPDATE SUPPORT!

– NOTE THAT THE UNION VIEW REQUIRES CONVERTING EACH
RELATION TO THE SUPERTYPE

– ELIMINATES THE NEED TO MANAGE ANY HIDDEN VALUES

• Both Designs Improve User Understanding,
Optimization, Storage Costs, I/O Costs

C. 1998, Alternative Technologies, All Rights Reserved Page 69

UNIDENTIFIED ENTITY INSTANCES
 (HANDLING MISSING INFORMATION)

Problem: “The Unassigned Employee”
CONSIDER CERTAIN NEW HIRES

– ALWAYS REPORTS TO SOMEONE, PERHAPS FOR
REASSIGNMENT

– ALWAYS RECEIVES PAYMENT AUTHORIZATION FROM
SOMEONE

– CONCEPTUALLY BELONGS TO AN ABSTRACT OR VIRTUAL
DEPARTMENT

– REPRESENTS FUNCTIONAL, ALBEIT ABSTRACT, BUSINESS
ENTITY INSTANCE

• Often modeled with null for department “value”

Solution:

Create a Value for the Abstract Department

C. 1998, Alternative Technologies, All Rights Reserved Page 70

WHERE WE ARE

The Approach In Overview

Scalability

Data Independence

Load Profiles

Getting the Most Out of the Optimizer

Denormalization

Handling Missing Information

• Optimal Storage Management

C. 1998, Alternative Technologies, All Rights Reserved Page 71

PART VII

OPTIMAL STORAGE
MANAGEMENT

C. 1998, Alternative Technologies, All Rights Reserved Page 72

DIMENSIONAL SCHEMAS

FACTS, AND STARS AND
(SNOW)FLAKES, OH MY!

C. 1998, Alternative Technologies, All Rights Reserved Page 73

DIMENSIONAL SCHEMAS
THE WRONG WAY

• Star Join Depends on Cartesian Products
– FORMS CARTESIAN PRODUCT OF DIMENSION TABLES

– CARTESIAN PRODUCTS DON’T SCALE

– STAR SCHEMAS DON’T SCALE

» TRUE EVEN WITH SPECIAL INDEXES AND JOIN
ALGORITHMS

– FACT TABLES GROW FASTER THAN DIMENSION TABLES

» CREATES AN I/O IMBALANCE OR SKEW

» REQUIRES A PHYSICAL RE-DESIGN

• Fact Tables Are Often Multi-entity (Multi-fact!)
– MANY COLUMNS ARE NULLABLE

– OFTEN NO WELL-DEFINED PRIMARY KEY

– FOREIGN KEYS OFTEN ADDED

C. 1998, Alternative Technologies, All Rights Reserved Page 74

DIMENSIONAL SCHEMAS
THE RIGHT WAY

• Star Schema Designs Aren’t Methodical
– NO CORRECTNESS TESTS NOR DESIGN PROCEDURES

– EASY TO VIOLATE INTEGRITY

– EASY TO OBTAIN NONSENSE “FACTS”

• The Right Stuff
– LOGICAL DESIGN

» BUT IGNORE IRRELEVANT DEPENDENCIES

– PHYSICAL DESIGN

» OPTIMIZE FOR MINIMUM I/O

» PHYSICAL TABLES MUST BE DERIVED FROM LOGICAL
SCHEMA

• NO LOSS OF INFORMATION OR DEPENDENCIES

» MOST IMPORTANT FOR A DATA WAREHOUSE!

C. 1998, Alternative Technologies, All Rights Reserved Page 75

DIMENSIONAL SCHEMAS
THE RIGHT WAY

• Get the Benefits Without Abandoning Reason!

– FULLY NORMALIZE THE LOGICAL DESIGN

– USE ONLY THE DEPENDENCIES THAT MATTER TO THE
APPLICATION - RELATIVE NORMALIZATION

» MANY DEPENDENCIES ARE NEVER SEEN BY THE
APPLICATION

» ATTRIBUTES MAY BE COMPLEX (A SET FOR A REPEATING
GROUP) - BE CAREFUL!

– OPTIMIZE THE PHYSICAL FOR MINIMUM STORAGE

» HIGH SCAN COST OFTEN OUTWEIGHS JOIN COST

– MAKE CERTAIN THE PHYSICAL IS COMPATIBLE WITH THE
LOGICAL

C. 1998, Alternative Technologies, All Rights Reserved Page 76

PRE-AGGREGATION
AND

SUMMARY TABLES

C. 1998, Alternative Technologies, All Rights Reserved Page 77

AGGREGATION

• Data Warehouses Often Require Aggregate Views

• Dynamic Aggregation is Too Expensive

• Precomputing Everything Is Too Expensive

– MAY NEED MULTIPLE LEVELS OF AGGREGATION (BY DAY,
WEEK, MONTH, YEAR)

– MAY NEED MULTIPLE AGGREGATES (AVERAGE, SUM)

– HORRIBLE FOR REFRESH OF A LARGE DATABASE

• Same Issues Apply To OLTP Aggregation

C. 1998, Alternative Technologies, All Rights Reserved Page 78

AGGREGATION

• Hierarchies of Aggregation
– EACH LAYER IS A DERIVED, PARTIALLY STORED, DATABASE

– DESIGN THE LAYER AS YOU WOULD ANY OTHER DATABASE

» EACH LAYER MUST FOLLOW DB DESIGN RULES

– EACH LAYER SCHEMA DERIVED FROM THE PREVIOUS

– REFRESH EACH LAYER FROM THE PREVIOUS

– HIGHER AND HIGHER LEVELS OF ABSTRACTION

» BY PERIOD

» BY AGGREGATION GROUP

– BOUNDARY RULE

» AN UPDATING TRANSACTION MUST NEVER UPDATE MORE
THAN ONE LAYER!

• CAN CREATE UNPREDICTABLE OUTCOMES

• Multiple Hierarchies Are Possible

C. 1998, Alternative Technologies, All Rights Reserved Page 79

AGGREGATION

• Create a Derived, Partially Stored, Database
– DESIGN THE LAYER AS YOU WOULD ANY OTHER DATABASE

– STORE GREATEST COMMON DENOMINATOR OF THE
AGGREGATES

– CREATE VIEWS TO COMPUTE FINAL AGGREGATES
DYNAMICALLY

– EXAMPLE:

» STORE SUM AND COUNT

» CAN THEN DYNAMICALLY AND CHEAPLY COMPUTE SUM,
AVERAGE, AND MEAN VIEWS, AMONG OTHERS

– DON’T STORE ALL AGGREGATIONS

– TECHNIQUE NOW USED BY IBM DB2 (“SUMMARY INDEXES”)

C. 1998, Alternative Technologies, All Rights Reserved Page 80

PARTITIONING

C. 1998, Alternative Technologies, All Rights Reserved Page 81

DATABASE PARTITIONING

• Partitioning A Database Into Multiple Groups of
Tables

• Some Reason for Associating Tables
– CONSISTENT DATA SETS

• Useful When Applications or Transactions Access
Only One Database Partition at a Time

• Useful If the Use of a Table Is Associated With Some
Physical Resource (e.g., Node or CPU)
– MIGHT CREATE A HOT SPOT IF DONE INCORRECTLY

– NOT THE SAME AS SCHEMA PARTITIONING WHICH IS
GENERALLY USED TO CONTROL HOT SPOTS

C. 1998, Alternative Technologies, All Rights Reserved Page 82

USER/APPLICATION
DATABASE PARTITIONING

• Partitioning By User
– CLASSES OF USERS

– COMMON AUTHORIZATIONS

– COMMON TYPES OF TRANSACTIONS

• Partitioning By Application
– COMMON COLLECTION OF TABLES OR TABLE SUBSETS

– COMMON SET OF TRANSACTIONS

– MAY REQUIRE RESYNCHRONIZATION OF TABLE COPIES

» Replication or batch copy management

» Batch integrity checks

» Work flow queue management

C. 1998, Alternative Technologies, All Rights Reserved Page 83

TABLE PARTITIONING

• Design Tools Don’t Support

• Partitioning of Tables

• Based on Either Horizontal or Vertical Subsets

• Horizontal Subsets Can Be Specified in Many Ways
– RANGE OR KEY: PARTITION# = f(KEY VALUE RANGE)

– EXPRESSION: PARTITION# = f(EXPRESSION VALUE RANGE)

– HASH AND RANDOM: PARTITION# = HASH(KEY VALUE)

– SCHEMA: ASSIGN TABLE TO PARTITION

• Vertical Subsets Should Remove Contention and
Reduce I/O
– NON-LOSS PHYSICAL TABLE PROJECTIONS

– LOCKING SHOULD BE ON THE ROW SUBSET (LOGICALLY)

C. 1998, Alternative Technologies, All Rights Reserved Page 84

TABLE PARTITIONING

• Subset Partitioning and Subset Merging Should Be
Online and Dynamic:

• No Vendor Supports Automatic Most Frequently
Used Partitioning!

...YOU MAY BE ABLE TO SIMULATE

• User-Defined Partitioning Functions Should Be
Permitted.

• Do Not Confuse Physical Partitioning Operations
With Logical Database Operations.

C. 1998, Alternative Technologies, All Rights Reserved Page 85

PARTITIONING SCHEMES
SELECTION

Compute Relative Value
– FOR A EACH TABLE T[i]

– FOR EACH CANDIDATE PARTITIONING KEY K[ijk], OVER ALL j
AND k

– WEIGHT (P) * TRANSACTION VOLUME (V) * NUMBER OF USES
OF CANDIDATE (N)

– W[i] = V[i] * P[i] * N[i]

– IDENTIFY THE DISTRIBUTION OF CANDIDATE VALUES W

Apply the Significance Test
– A GOOD CANDIDATE FOR KEY PARTITIONING WILL BE VALUED

AT LEAST TWO STANDARD DEVIATIONS ABOVE OTHERS

• General Principle for Range Partitioning
– BEST FOR APPLICATIONS THAT USE TRANSACTIONS CONFINED

TO A RANGE OF KEY VALUES

C. 1998, Alternative Technologies, All Rights Reserved Page 86

PARTITIONING SCHEMES
SELECTION

Identify Opportunities for Expression Parititioning
– INSTEAD OF SIMPLE KEYS

– APPLY TO UNPARTITIONED TABLES

– APPLY STEPS 1 AND 2 TO COMMON EXPRESSIONS

Identify Opportunities for Hash and Random
Partitioning
– APPLY TO UNPARTITIONED TABLES

– HOT SPOTS TABLES

– PARTITIONED HASH JOINS TABLES

– PARTICULARLY USEFUL FOR OLTP UPDATE TRANSACTIONS

Use Schema Partitioning Where Appropriate
– SMALL TO MEDIUM SIZE TABLES ACCESSED BY SCAN

– TABLE ACCESSED WITH PARTITIONS ON A GIVEN NODE

C. 1998, Alternative Technologies, All Rights Reserved Page 87

PARTITIONS
SIZE DETERMINATION

Goal: Load Balance for I/O
– ESSENTIALLY HORIZONTAL OR VERTICAL STRIPING

– NUMBER PARTITIONS = MIN(NUMBER CPUs, CONTROLLERS)

Solution:

Determine Relationship of Partition Key Value to I/O
Distribution
– CRUD AND PREDICTED OR MEASURED VOLUMETRICS

– USE CURVE FITTING TO OBTAIN A POLYNOMIAL FUNCTION f()

– EST. I/O = f(KEY_VALUE)

– KEY VALUE DISTRIBUTIONS DETERMINE I/O MULTIPLIER
FUNCTION g(KEY_VALUE)

» DIVIDE BY ROWS PER BLOCK AND ROUND UP TO ESTIMATE
I/O

C. 1998, Alternative Technologies, All Rights Reserved Page 88

PARTITIONS
SIZE DETERMINATION

Find I/O per partition
– SUMMATION OVER A RANGE OF VALUES IN PARTITION

– FORMALLY ESTIMATE VIA INTEGRATION

» FIND TOTAL I/O OVER THE TIME PERIOD OF INTEREST
(HOUR, DAY, WEEK, …)

• THIS SHOULD INCLUDE ALL PEAKS

» DIVIDE BY MIN(CPUs, CONTROLLERS) TO DETERMINE I/O
“SIZE” PER PARTITION

» I/O SIZE PER PARTITION = INTEGRAL FROM LOWER TO
UPPER KEY VALUE BOUNDS

» FIRST PARTITION LOWER BOUND IS LOWEST KEY VALUE

» SOLVE FOR EACH CONSECUTIVE UPPER BOUND OF
INTEGRATION IN TURN

C. 1998, Alternative Technologies, All Rights Reserved Page 89

PARTITIONS
SIZE DETERMINATION

Calculation Example
ASSUMPTIONS

f: EST. I/O = (KEY_VALUE)

g: MULTIPLIER = 3 * KEY_VALUE

KEY_VALUE RANGE = 0 - 1,000,000, 10 CONTROLLERS / CPUs

TOTAL I/O = 6,000,000

CALCULATION

 f * g = 3 * (KEY_VALUE)2

INTEGRAL (f * g) = 6 * KEY_VALUE, INTEGRAL [a, b] = 6 * (b - a)

I/O PER PARTITION = 6,000,000 / 10 PARTITIONS = 600,000

1st PARTITION UPPER BOUND: 600,000 = 6 * b, SO b = 100,000

2nd PARTITION UPPER BOUND: 600,000 = 6 * (b - 100,000), SO b =
200,000

C. 1998, Alternative Technologies, All Rights Reserved Page 90

REPLICATION

C. 1998, Alternative Technologies, All Rights Reserved Page 91

REPLICATION

• Design Tools Don’t Support

• A Combination of Controlled Redundancy and
Partitioning

• Always Address Partitioning Design First

• Isolate and Treat “Local” Redundancy on a Per-
partition Basis

• Treat “Distributed” Redundancy Last

• Insist on Parallel Replication

C. 1998, Alternative Technologies, All Rights Reserved Page 92

REPLICATION

• Generally Physical (Does Not Replicate SQL)
– REQUIRES CARE IN ORDER OF APPLICATION

– CAN CONSUME LARGE AMOUNT OF NETWORK I/O

– CAN INCREASE LOGGING REQUIREMENTS

• Log Based Replication
– MINIMIZES CONTENTION DURING UPDATES

– INHERENTLY ASYNCHRONOUS

• Trigger Based Replication
– TRIGGERS IN EXECUTION PATH LENGTH FOR ALL USERS

– CAN BE SYNCHRONOUS OR ASYNCHRONOUS

• Copy Management
– CAN OFFER BULK TRANSFERS FOR REFRESH

C. 1998, Alternative Technologies, All Rights Reserved Page 93

REPLICATION

• Controlled Redundancy

– DEPENDS ON BEING ABLE TO SEPARATE READ FROM WRITE

• Determine Number of “Read-only” Copies

– OPTIMIZE I/O LOAD ACROSS NODES

GOALS:

– MINIMIZE INTERNODE I/O AND HARDWARE CONTENTION

» WITHOUT OVERRUNNING CACHE

METHOD:

– ASSIGN A COPY IF REFRESH I/O IS LOWER THAN REPLICA I/O

• Avoid Peer-peer Replication Except for Commutative
Transactions

– THAT IS, ORDER SHOULD NOT MATTER (same answer, any order)

C. 1998, Alternative Technologies, All Rights Reserved Page 94

Questions?

C. 1998, Alternative Technologies, All Rights Reserved Page 95

BIOGRAPHY

 David McGoveran is an industry analyst, and an
international management and database consultant
and president of Alternative Technologies (Boulder
Creek, CA), specialists in solving difficult relational
applications problems since 1981. He has authored
numerous technical articles and co-authored
several books (including those with Chris Date). His
newest book is A Zero Management: Business
Success in the New Millenium.

 This seminar is based on his workshops: The
Client/Server University: Designing Effective
Databases, and Achieving Scalability

C. 1998, Alternative Technologies, All Rights Reserved Page 96

PLEASE FILL OUT YOUR
EVALUATIONS...

Thank you!

