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BEFORE YOU LEAVE… 
 

PLEASE FILL OUT YOUR 
EVALUATIONS. 

 

Thank you! 
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ASSUMED BACKGROUND 

• You Understand The Relational Model 

– THE BASIC CONCEPTS 

– THE DATE-MCGOVERAN DEFINITIONS 

» RELATIONS AND DATABASES 

» RELATION PREDICATES 

» INTEGRITY RULES  

– DATA INDEPENDENCE 

» DEFINITION AND IMPORTANCE 
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ASSUMED BACKGROUND 

• You Understand Logical Design 

– DEPENDENCIES 

– NORMALIZATION 

– THE DATABASE DESIGN PRINCIPLES 

» THE DATABASE DESIGN PRINCIPLE OF ORTHOGONALITY 
(MCGOVERAN-DATE) 

» THE DATABASE DESIGN PRINCIPLE OF COMPLETENESS 
(MCGOVERAN) 

» THE DATABASE DESIGN PRINCIPLE OF MINIMALITY 
(MCGOVERAN) 

– IDENTIFYING PROPER COLLECTIONS OF TABLES  

– GUARANTEEING VIEW UPDATABILITY 
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THE APPROACH 

• Establish Requirements 

– FIXED 

» KNOWN INITIAL SUBJECT MATTER 

» CORRECTNESS 

– VARIABLE 

» PERFORMANCE 

» LOAD 

» ADDITIONAL SUBJECT MATTER 

• Design Goals 

– MEET FIXED REQUIREMENTS 

– HAVE FLEXIBILITY FOR VARIABLE REQUIREMENTS 
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THE APPROACH 

• Technique for Addressing Fixed 

– MEET FIXED REQUIREMENTS THROUGH  LOGICAL DESIGN 

» INSURE CORRECTNESS 

– SEPARATE FIXED FROM VARIABLE THROUGH DATA 
INDEPENDENCE 

» PERMIT A LARGE CLASS OF PHYSICAL CHANGES 

• APPLICATIONS ACCESS ONLY THE LOGICAL SCHEMA 

• TOOLS & APPLICATIONS THAT CREATE OR ACCESS THE PHYSICAL 
SCHEMA LIMIT SCALABIILTY! 

» ACCOMMODATE ADDITIONAL SUBJECT MATTER 

• PROVIDES FUNCTIONAL SCALABILITY! 

ADDRESSING FIXED THROUGH LOGICAL IS ASSUMED 
ALREADY DONE IN THIS COURSE 
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THE APPROACH 

• Technique for Addressing Variables 

– ADDRESS VARIABLE GOALS 

» MONITOR / ANTICIPATE LOAD PROFILE CHANGES 

» SELECT / IMPLEMENT BEST PHYSICAL SOLUTION 

» ACCOMMODATE ADDITIONAL SUBJECT MATTER  

• EXTEND THE LOGICAL MODEL 

• PROPAGATE LOGICAL CHANGES INTO PHYSICAL 

 

PHYSICAL DESIGN IS A NEVER ENDING ITERATIVE PROCESS . . . 
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OUTLINE 

• The Approach In Overview 

• Scalability 

– DEFINITION AND GENERAL GOALS 

– ENABLING PLATFORM ARCHITECTURE SCALE UP 

• Data Independence 

– WHAT IS LOGICAL AND WHAT IS PHYSICAL 

– PHYSICAL DERIVED FROM LOGICAL 

» KEEPING THEM CONSISTENT 

– THE VALUE OF DATA INDEPENDENCE 

– NORMALIZATION VS. DENORMALIZATION 

– STAR SCHEMAS 
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OUTLINE 

• Load Profiles 

– SOURCES OF LOAD 

» FEEDS, REFRESH, LOAD / RELOAD 

» BACKUP, EXTRACTS, STANDARD REPORTS, ADHOC QUERY, 
MDD / OLAP 

» GROWING USER COMMUNITY 

– MEASURING AND SAMPLING 

– MODELING 

– HANDLING VARIANCE  

• Getting the Most Out of the Optimizer 

– APPLICATION, INDEX, TRANSACTION DESIGN PRINCIPLES 



C. 1998, Alternative Technologies, All Rights Reserved                                                 Page 10  

OUTLINE 

• Denormalization 

• Missing Information 
– OPTIMIZING FOR SPACE AND PERFORMANCE 

• Optimal Storage Management 
– DIMENSIONAL SCHEMAS 

– PRE-AGGREGATION AND SUMMARY TABLES 

– TABLE PARTITIONING 

» NUMBER, SIZE, AND PARTITIONING METHOD 

– REPLICATION AND OTHER FORMS OF REDUNDANCY 

» WHEN AND HOW TO USE REPLICATION 

• Getting the Most Out of Parallelism 
– TIPS AND TECHNIQUES THROUGHOUT 
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WHERE WE ARE 

The Approach In Overview 

• Scalability 

• Data Independence 

• Load Profiles 

• Getting the Most Out of the Optimizer 

• Denormalization 

• Handling Missing Information 

• Optimal Storage Management 
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PART I 
 

SCALABILITY 
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SCALABILITY 
 Definition 

SCALABILITY IS: 
– SCALEUP or SPEEDUP (see slides which follow) 

– WITH RESPECT TO A SPECIFIC RESOURCE MIX 

» AMOUNT OF MEMORY, NUMBER / SIZE OF STORAGE UNITS, 
NUMBER OF CPUs, NUMBER OF NODES, et cetera. 

– OVER A SPECIFIED RANGE  

– FOR A PARTICULAR WORKLOAD 

» NUMBER OF USERS, DB SIZE, TRANSACTION RATE, 
TRANSACTION COMPLEXITY or PROFILE 

• Conceptual Definition of Speed Up 

MORE RESOURCES  BETTER PERFORMANCE, SAME WORKLOAD 

• Conceptual Definition of Scale Up 

MORE RESOURCES  SAME PERFORMANCE, BIGGER WORKLOAD 
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SPEEDUP 
DEFINITION 

• Fixed Workload, More Resources 
– IMPROVE THROUGHPUT (COMPLETE WORK FASTER) 

– IMPROVE RESPONSE TIME (ENABLE USER MORE QUICKLY) 

• W = Work Rate Possible With An Available Resource  
– W1 WITH RESOURCE R 

– W2 WITH RESOURCE 2 * R 

– KEEPING OTHER FACTORS CONSTANT 

– MEASURED OVER SAME TIME PERIOD 

• P = Percent Speedup  
– WITH RESPECT TO THE PARTICULAR RESOURCE(S) 

– OVER THE RANGE R  2R 

P = (W2 - W1) * 100 / W1 
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SCALEUP 
DEFINITION 

• Fixed Elapsed Time, More Resources 
– INCREASE WORKLOAD (MORE TASKS COMPLETED) 

– IMPROVE THROUGHPUT (FINISH SAME WORK SOONER) 

– IMPROVE CONCURRENCY 

• Resource Required to Perform Fixed Amount of Work  
– R1 WITH LOAD L 

– R2 WITH LOAD 2 * L   

– KEEPING OTHER FACTORS CONSTANT 

– MEASURED OVER SAME TIME PERIOD 

• S = Percent Scaleup  
– WITH RESPECT TO THE RESOURCE  

– OVER THE RANGE L  2L 

S = (R2 - R1) * 100 / R1  
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SCALABILITY 
GENERAL GOALS 

The Essence of Scalability is Independence 

 of. . . 
– COMPONENTS BY FUNCTION AND TASK INSTANCE 

– RESOURCES ASSIGNED TO INDEPENDENT COMPONENTS 

• Non-Independence Manifests As. . .  
– RESOURCE CONTENTION (WAIT TIME) 

– PROCESSING ANOMALIES AND MAINTENANCE SIDE EFFECTS 

– INABILITY TO EXPLAIN THE ARCHITECTURE 

– INABILITY TO EXPLAIN THE CAUSE OF SYMPTONS 

 

Avoid These By Building-in Independence 
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WHERE WE ARE 

The Approach In Overview 

Scalability 

• Data Independence 

• Load Profiles 

• Getting the Most Out of the Optimizer 

• Denormalization 

• Handling Missing Information 

• Optimal Storage Management 
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PART II 
 

DATA INDEPENDENCE 
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MULTIPLE DATABASE MODELS 

• What is a relational database? 

– A COLLECTION OF FACTS: NOT A COLLECTION OF DATA! 

– A FACT IS A TESTABLE RELATIONSHIP AMONG DATA 

• How many maintain both logical and physical data 
models? 

• How many know the distinction? 

• Who knows the value of the logical model? 

• Who knows the value of the physical model? 

• How many maintain a map between them? 
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MULTIPLE DATABASE MODELS 

• Why have levels of abstraction? 

– EASE / SPEED OF DESIGN AND DEVELOPMENT 

– EASE OF MAINTENANCE 

– CORRECTNESS 

– SMALLER, MORE FLEXIBLE SYSTEMS 

• Conceptual  

– A VIEW OF THE LOGICAL MODEL 

– PRESENTS THE BUSINESS OR CONCEPTUAL VIEW 

– ADDRESSES THE USER’S OR APPLICATIONS VIEW(S) 

» BOTH PROCESS (BUSINESS TRANSACTIONS) AND DATA 

– CRUCIAL TO EASE OF USE 
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MULTIPLE DATABASE MODELS 

• Logical  

– GUARANTEES ACCESS (RELATIONAL CORRECTNESS AND 
COMPLETENESS) 

» BOTH PROCESS (PERMISSIBLE STATE TRANSITIONS) 
AND DATA 

» A SUCCESSFUL TRANSACTION IS A PERMISSIBLE 
STATE TRANSITION (TAKES DATABASE FROM ONE 
CONSISTENT STATE TO ANOTHER) 

• Physical  

– ADDRESSES EFFICIENCY (PERFORMANCE AND STORAGE) 

» BOTH PROCESS (ACCESS METHODS) AND DATA 

– MUST BE A VIEW OF THE LOGICAL MODEL (WHY?) 
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LAYERED DESIGN 

 

Logical Derived Views 

 

Logical Base View 

 

 

Physical View 

 

Physical Implementation 
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DATA INDEPENDENCE 

• Logical Mostly Independent of Physical 
– CAN HIDE STORAGE ALLOCATION AND PERFORMANCE  

– PHYSICAL PLATFORM ISSUES NEED BE KNOWN ONLY TO DBMS 

– SQL ENTANGLES THESE, ESPECIALLY AT TABLE CREATION 

• Applications Access Only the Conceptual or Logical 
Schemas 

Result? 

A SCALABLE DESIGN! 
– CAN CHANGE THE APPLICATION CODE AND THE PHYSICAL 

SCHEMA  INDEPENDENTLY! 

– ADDRESS INVARIANT AND VARIABLE REQUIREMENTS 
INDEPENDENTLY 

– ENABLES SCALABLE PLATFORM ARCHITECTURE CHANGES   
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WHERE WE ARE 

The Approach In Overview 

Scalability 

Data Independence 

• Load Profiles 

• Getting the Most Out of the Optimizer 

• Denormalization 

• Handling Missing Information 

• Optimal Storage Management 
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PART III 
 

LOAD PROFILES 
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LOAD 
WHAT IS IT? 

• Database Load Has Many Factors 
– WHAT IS BEING DONE? 

» INPUTS - SEARCH ARGUMENTS  (MORE LATER) 

» OUTPUTS - DATA RETRIEVAL AND MODIFICATIONS 

– HOW IS IT BEING DONE? 

» I/O AND MEMORY REQUIREMENTS 

» PARTICULAR ALGORITHMS (ACCESS METHODS) 

– TIME DEPENDENCIES AND FLUCTUATIONS 

– CONCURRENCY 

– IMPORTANCE 
 

Goal: 

Characterize Load via a Uniform, Simple Procedure 
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LOAD PROFILES 
WHY AND HOW 

• Necessary for Many Physical Design Decisions 

• Load Profiles are Dynamic 
– AN ON-GOING PROCESS IN THE FACE OF LITTLE INFO 

– VARIANCE OR “RANDOM” FLUCTUATIONS 

– CYCLICAL (DAILY, WEEKLY, MONTHLY, YEARLY) 

– TREND (FOR EXAMPLE, GROWTH) 

• Actual Load Profiles are often Complex 
– REDUCE COMPLEXITY BY REDUCING DETAIL 

• Two Methods  
– MEASURE  

– MODEL 
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LOAD PROFILES 
MEASUREMENT 

• DBMS Instrumentation 
– ALL ACCESS RESTRICTED TO STORED PROCEDURES 

– CREATE MULTIPLE LOGGING TABLES 

– INSERT TRACE VIA NESTED ASYNCH PROCEDURE  

» ROLLUP VIA PERIODIC SWEEPING (CRON JOB, TRIGGER, 
etc.) 

• BEGIN: UPDATE SUM-STATS… WHERE MODULO(TIME) = CONSTANT: 
DELETE DETAIL-STATS: END 

» ALTERNATIVELY ROLLUP VIA MERGE REPLICATION 

– WHAT ABOUT AD-HOC QUERIES? 

» MOST FOLLOW A COMMON PATTERN 
• PARAMETERIZE AS STORED PROCEDURE AND SAVE 

• LET USERS SELECT BEFORE CREATING NEW QUERY 

» AT LEAST JOINS AND CONDITIONS ARE COMMON 
• PRESENT AS “BUSINESS OBJECTS” AND LOG USE 
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LOAD PROFILES 
MEASUREMENT 

• Monitoring or Trace Tools 
– SNIFFERS: TELERAN AND OTHERS 

• Application Instrumentation 
– USER-WRITTEN 

» LOG TO IN-MEMORY “FILE” 

» COPY PERIODICALLY TO DATABASE 

– VENDOR-WRITTEN 

» APPLICATION SERVER ENVIRONMENTS 

» CHARGE-BACK ACCOUNTING 

» TRACE / AUDIT FUNCTIONALITY 

• Reduce Complexity via Sampling Where Possible  
– WHERE {conditions} AND RANDOM( min, max) /range) < sample-

rate  
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LOAD PROFILES 
MODELING 

Use Artificial Transactions That Represent the Typical 
Usage 

 Identify Known Tasks 
– DEFINE VIA TRANSACTIONS 

 Prioritize ( P ) Transactions by Relative Business 
Importance 
– USE A SIMPLE RANKING AND THEN NUMBER 

– ALTERNATIVELY ASSIGN A SUBJECTIVE VALUE 

 Quantify Transaction Volume ( V ) 
– FREQUENCY, TIME DISTRIBUTION, I/O COST, ACCESS ORDER 

» DATA ACCESS ORDER IS CRUCIAL FOR CONCURRENCY AND 
PARALLELISM 

– ESTIMATE VARIANCE FOR EACH 
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LOAD PROFILES 
MODELING 

• Modeling: Model Transactions 

– CREATE A MODEL TRANSACTION FOR EACH REAL 
TRANSACTION  

– ELIMINATE REDUNDANT MODEL TRANSACTIONS 

» MERGE TIME DISTRIBUTION AND VOLUME REQUIREMENTS 
OF ORIGINAL TRANSACTIONS 

– THESE CHARACTERIZE (OR PROFILE) THE LOAD 

• Model Databases: A Caution 

– DON’T ASSUME RESULTS ON A “SCALED DOWN” DATABASE 
WILL SCALE UP! 

» I/O AND BUFFER USE ARE NON-LINEAR 

– CALCULATED COSTS ARE USUALLY MORE ACCURATE 
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LOAD PROFILES 
MODELING 

• Identify Access Patterns 
– EACH TRANSACTION X[ k ] HAS QUERIES Q[ jk ] HAS 

PARTICIPATING TABLES T[ ijk ] 

– MEASURE OR ESTIMATE TRANSACTION VOLUMES V[ k ] 

» AVERAGE, PEAK, DISTRIBUTION 

» NOTE: CRUD AND VOLUMETRIC ANALYSIS ARE HELPFUL 

– WEIGHT TRANSACTIONS X[ k ] BY IMPORTANCE P[ k ] 

• Tune Individual Queries 
– FOCUS ON MOST IMPORTANT QUERIES: TOP 20% V[ k] * P[ k ] 

– USE THE “EXPLAIN” UTILITY ON EACH QUERY 

» IDENTIFY BEST ACCESS METHODS M[ ijk ] AND “DRIVING” 
KEYS K[ ijk ] FOR EACH TABLE T[ ijk ] ACCESSED 

NOTE: THESE ARE CANDIDATE PARTITIONING KEYS FOR 
PARTICIPATING TABLES 
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WHERE WE ARE 

The Approach In Overview 

Scalability 

Data Independence 

Load Profiles 

• Getting the Most Out of the Optimizer 

• Denormalization 

• Handling Missing Information 

• Optimal Storage Management 
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PART IV 
 

GETTING THE MOST OUT 
OF THE OPTIMIZER  
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APPLICATION PRINCIPLES 

• Set Processing 
– AVOID ROW-AT-A-TIME LOOPS 

» SELECT EMPNO FROM EMP 
• GET ARRAY OF EMPLOYEE NUMBERS 

» BEGIN LOOP: CURNO = EMPNO[ index] 

» SELECT EMPNO, ESAL FROM EMP WHERE EMPNO = CURNO 

» NEW-ESAL = ESAL * 1.1 

» UPDATE EMP SET ESAL = NEW-ESAL WHERE EMNO = 
CURNO 

» NEXT EMPNO 

– BETTER 

» UPDATE EMP SET ESAL = ESAL * 1.1 

• Asynchronous Requests 
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APPLICATION PRINCIPLES 

• Asynchronous Requests 
– AVOID BLOCKING VIA BACKGROUND PROCESSING 

» QUERY PROCESSING  

» DATA RETRIEVAL  
• MOVE DATA IN BULK TO MEMORY OR A LOCAL FILE 

» DATA MODIFICATIONS 
• MOVE DRIVING PARAMETERS IN BULK TO A WORK TABLE 

• PROCESS VIA A SET UPDATE, SET INSERT, OR SET DELETE 

– AVOID CONVERSATIONAL TRANSACTIONS 

» RETRIEVE DATA ONLY IF NECESSARY 

» AVOID “CONFIRMING” RETRIEVALS 
• YOU CAN STORE RESULTS IN AN AUDIT TABLE 

• YOU CAN ALWAYS RUN A REPORT LATER 

» CONDITIONALIZE ALL TRANSACTIONS 
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• Understand Transaction Structure 
– AN INITIAL READ PHASE 

– AVOID RE-READING DATA 

– A WRITE PHASE BEGINS WITH THE FIRST MODIFICATION 

» INSERT, UPDATE, OR DELETE 

•  Minimize the Write Phase 
– DATA TOUCHED 

– TIME TO COMMIT 

– CONSIDER PRE-READING DURING THE READ PHASE 

» IMPROVE CACHE HITS DURING WRITE PHASE 

• Minimize Transaction Scope 
– MINIMIZE NUMBER OF ACTIONS 

UNDERSTANDING TRANSACTIONS 
 DESIGN ISSUES  
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UNDERSTANDING TRANSACTIONS  
DESIGN ISSUES 

• Commutative Property 

– DEFINITION: ORDER INDEPENDENT 

– COMPLETE INDEPENDENCE OF STATE 

• Inverse Property 

– PERMITS COMPENSATING TRANSACTIONS 

» a.k.a. “UNDO” TRANSACTIONS 

– HELPS AVOID ROLLBACK 

» SEE DO’S AND DON’TS 

• Ways to Avoid Long Running Transactions 

– BOOKKEEPING 

• Execute Local to Any Necessary Shared Resources 

– AVOID DISTRIBUTED TRANSACTIONS 
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UNDERSTANDING TRANSACTIONS  
DO'S AND DON'TS 

• Follow Transaction Design Principles 
– APPLIES TO ALL SHARED DATA RESOURCE ENVIRONMENTS 

– NOT JUST A DBMS ISSUE 

– JAVA OR ANY MULTI-THREADED APPLICATION 

– USE SERIALIZABLE TRANSACTIONS ONLY 

• Understand Your Codes Critical Sections! 
– CRITICAL SECTION IF INTERRUPTION CAUSES CORRUPTION 

• Deadlock and Livelock 
– CAN BE ACROSS SHARED RESOURCES OF ANY TYPE  

» DATA, CPUs, DISKs, MEMORY, I/O, DISTRIBUTED COMPONENTS, . . . 

• Avoid Rollback 
– VERY COSTLY AND CREATES RESOURCE CONTENTION 

– ROLLBACK ONLY ON UNAVOIDABLE PHYSICAL ERROR 
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UNDERSTANDING TRANSACTIONS  
DESIGN ISSUES 

 

   BEGIN              ONLY COMMIT! 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       GOAL: MINIMIZE TIME AND DATA SCOPE 

READ PHASE 

WRITE  

PHASE 
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TRANSACTION DESIGN 
CONFLICT ANALYSIS 

• Identify Transactions That Can Interfere 

 

• Why?                                        

– SCHEDULE TRANSACTIONS AND REDUCE CONTENTION 

» AVOID SUBMITTING TWO OR MORE TRANSACTIONS THAT 
REQUIRE LOCKING TO GUARANTEE ISOLATION 

» UNFORTUNATELY, YOU MUST DO THE SCHEDULING 
YOURSELF. 

– INCREASE RESPONSE TIME AND THROUGHPUT 
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TRANSACTION DESIGN 
CONFLICT ANALYSIS 

Two Transactions Cannot Interfere If: 

– THEY DON'T TOUCH THE SAME DATA 

– THEY ARE READ ONLY 

– THEY COMMUTE 

OR 

– THEY DON'T RUN AT THE SAME TIME 
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CONFLICT ANALYSIS 
A DATABASE EXAMPLE 

 Which pairs of the following can interfere? 

 UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE 
SNAME = ‘OLD_CO_NAME’ AND CITY = ‘NEW YORK’ 

 UPDATE SUPPLIERS SET SNAME = ‘OLD_CO_NAME’ WHERE 
SNAME = ‘NEW_CO_NAME’ AND CITY = ‘NEW YORK’ 

 UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE 
SNAME = ‘OLD_CO_NAME’ AND CITY <> ‘NEW YORK’ 

 UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE 
SNAME = ‘OLD_CO_NAME’ OR CITY <> ‘NEW YORK’ 

 

• What level of transaction isolation enforcement is required? 

• What is the effect of existence or non-existence of indexes?  
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QUERY PRINCIPLES 

• Make Each Query Smart! 

• Minimize Amount of Data Accessed 

• Minimize Amount of Data Returned or Updated 

• Divide and Conquer As Necessary 

– ASK FOR WHAT YOU NEED IN ONE QUERY 

» PROVIDE ALL KNOWN COLUMN RELATIONSHIPS 

– FLATTEN SUBQUERIES 

– AVOID AGGREGATE FUNCTIONS 

– BREAK INTO ADDITIONAL QUERIES ONLY AS NECESSARY 

– FINALLY, FORCE TEMPORARY DATA INTO WORK TABLES 
ONLY IF NECESSARY 
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INDEXING PRINCIPLES 

• Avoid Table Scans 
– EVERY READ SUPPORTED BY AN INDEX 

– EXCEPT FOR SMALL TABLES 

• Myth: Indexes Slow Down Updates, Speed Up 
Reads 
– REALITY: SET UPDATES ALSO BENEFIT 

• Concept of Simple Searchable Arguments 
– A SIMPLE BOOLEAN CONDITION WITH ONE OR MORE 

COLUMN REFERENCES 

– column <relationship> value  

– JOIN SSA: column <relationship> column 

– DISJUNCT SSA: SSA {OR SSA}... where all SSAs reference a 
common table.  
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INDEXING PRINCIPLES 

Problem: 

 “What is the minimum set of indexes that will cover 
the SSAs?” 

– FOR EVERY QUERY AND EVERY TABLE IN THAT QUERY, THERE 
SHOULD BE AT LEAST ONE SSA THAT REFERENCES A COLUMN 
OF THE TABLE AND IS INDEXED. 

– IDEALLY, BOTH COLUMNS OF AT LEAST ONE JOIN SSA PER 
JOIN IN EACH QUERY SHOULD ALSO BE INDEXED 
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INDEXING PRINCIPLES 

Solution:  
IDENTIFY ALL TABLES AND FOR EACH TABLE A LIST OF 

QUERIES THAT REFERENCE THAT TABLE  

IDENTIFY ALL THE DISJUNCT SSAs PER QUERY 

FOR EACH TABLE 

» FIND THE DISJUNCT SSA THAT APPEARS IN THE 
LARGEST NUMBER OF QUERIES AND INDEX IT 

» REMOVE THE NOW INDEXED QUERIES FROM THE LIST 

» IF NO QUERIES REMAIN, PROCEED TO THE NEXT TABLE 

» OTHERWISE ITERATE FINDING NEXT MOST FREQUENT 
DISJUNCT SSA 

ITERATIVELY IMPROVE INDEXES  

» ADD CO-APPEARING SSAs 
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INDEXING PRINCIPLES 

• Index Candidate Keys ... including Foreign Key 
Portions  
– DECLARING CONSTRAINTS MAY DO THIS FOR YOU 

• B-Tree Index 
– RANGES, SPECIFIC VALUES, BETWEEN, LIKES WITH FIXED 

HEAD, ORDER MAY HELP ORDER BY, GROUP BY 

• Bit Map Index 
– DISCRETE VALUES FROM DISCRETE DOMAINS 

– MAX. CARDINALITY DEPENDS ON PRODUCT 

• Hybrid Bit Map  
– BIT MAP WITH RANGE CAPABILITY 

– LOWER STORAGE EFFICIENCY 
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INDEXING PRINCIPLES 

• Hash Index 
– DISCRETE VALUE (LISTS) 

– PARALLELISM 

• Function or Expression Index 
– COMMON FUNCTIONS OR EXPRESSIONS IN SSAS 

– CAN SIMULATE VIA INDEX ON COMPUTED COLUMNS 
(TRIGGER) 

• Specialized Index 
– SPECIFIC TO DATA TYPE 

– K-TREEE, R-TREE, T-TREE AND MANY MORE! 

• Join or (Multi-table) Index 
– IDEAL FOR COMMON JOINS 

– “STAR INDEX” IS A SPECIAL CASE 
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INDEXING PRINCIPLES 

• Indexes and Parallelism 

– PRACTICAL SIZE LIMITED BY BUILD TIME 

– PARTITIONING CAN HELP 

» MAY HURT PARTIAL DATABASE RECOVERY  

– BUILD  

» FASTER, BUT GENERALLY NO RESTART  

– SEARCH  

» PARTITION AND PLACE ON A DIFFERENT DISK THAN DATA 

– UPDATE  

» SAME AS SEARCH, BUT CONSIDER CONTENTION 
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WHERE WE ARE 

The Approach In Overview 

Scalability 

Data Independence 

Load Profiles 

Getting the Most Out of the Optimizer 

• Denormalization 

• Handling Missing Information 

• Optimal Storage Management 
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PART V 

 
DENORMALIZATION 
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PHYSICAL DATABASE DESIGN 

• The Design of Storage Structures  

– FOR PERFORMANCE 

– WITHOUT SUBVERTING RELATIONAL CORRECTNESS! 

– DON’T CONFUSE WITH DESIGN OF THE LOGICAL VIEW! 

• Need Not Be Normalized If. . . 

– CAN HIDE PHYSICAL DEVIATIONS FROM FROM ALL USERS 

– ALL OPERATIONS MANIPULATE ONLY THAT LOGICAL VIEW 

– PHYSICAL SCHEMA UPDATES NEVER INDUCE LOGICAL  
ANOMALIES 
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PHYSICAL DATABASE DESIGN 

• Method 

– TREAT PHYSICAL SCHEMA AS A SET OF UPDATABLE VIEWS 
DEFINED FROM THE LOGICAL SCHEMA 

» NOT THE REVERSE METHOD (AS IS MORE COMMON)! 

– ENFORCE PHYSICAL MULTI-TABLE CONSTRAINTS VIA 
TRIGGERS AND INTEGRITY CONSTRAINTS 

 

Remember . . .  

The Golden Guarantee of Data Independence 

“ALL PHYSICAL COMPLEXITY CAN BE CONCEALED VIA ACCESS 
THROUGH THE LOGICAL SCHEMA”  
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PHYSICAL DATABASE DESIGN 

• With VLDB, Physical Design Rules Change 
EXAMPLE:  

» COMPOUND KEYS IN VERY LARGE TABLES ARE OFTEN 
REDUNDANT, WASTING LOTS OF SPACE 

SOLUTION: 

» REPLACE WITH SURROGATE KEYS AND A LOOKUP TABLE  

EXAMPLE: 

» “FACT” TABLES OFTEN CONTAIN MULTIPLE ENTITIES WITH 
NULLABLE ATTRIBUTES 

» CAUSES CONDITIONAL PROCESSING 

SOLUTION: 

» NORMALIZE AND ELIMINATE NULLS 
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“DENORMALIZATION” 

• Examples (Potentially Bad) 
– JOINED TABLES 

– PARTITIONED AND REPLICATED TABLES 

– REDUNDANT COLUMNS 

– DERIVED COLUMNS 

– EMBEDDED FOREIGN KEYS 

– UNIONED ENTITIES (LEADS TO NULLS!) 

– various other reasons.... 

• Why is this done? 
– OPTIMIZING STORAGE ALLOCATION 

– MINIMIZING I/O COSTS, INCLUDING JOIN I/O 

– MAKING IT “EASIER” TO ACCESS RELATED INFORMATION 
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“DENORMALIZATION”* 

• “Denormalization” (An Oxymoron!) 
– A PART OF THE PHYSICAL DATABASE DESIGN ONLY.  

• What is Legitimate? 

– A SINGLE LOGICAL RELATION CAN BE REPRESENTED BY TWO 
OR MORE PHYSICAL TABLES  

» JOIN, UNION, DIFFERENCE 

– MULTIPLE LOGICAL RELATIONS CAN BE REPRESENTED BY A 
SINGLE PHYSICAL TABLE  

» PROJECTION, RESTRICTION 
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PHYSICAL DATABASE DESIGN 
STRIPING AND RAID 

STRIPING GOAL: Balance the I/O Load 
– RANDOM OR ROUND ROBIN SPREAD OF THE DATA  

– ACROSS AVAILABLE CONTROLLERS AND DRIVES 

– MAY BE DETRIMENTAL TO SEQUENTIAL AND RANGE 
SEARCHES 

• Multiple Tables Striped to One Drive or Controller 
– CAN CAUSE CONTENTION 

– TREAT A DRIVE AS A SHARED “DATA” RESOURCE 

» PERFORM A CONFLICT ANALYSIS 

» BEST IF NO CONCURRENT USERS NEED THE SAME 
RESOURCE WITH RESOURCE > 40% CAPACITY 

• RAID 
– INTRODUCES LOSS OF PLACEMENT CONTROL 
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WHERE WE ARE 

The Approach In Overview 

Scalability 

Data Independence 

Load Profiles 

Getting the Most Out of the Optimizer 

Denormalization 

• Handling Missing Information 

• Optimal Storage Management 
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PART VI 
 

HANDLING MISSING 
INFORMATION 
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WHEN ARE NULLS USED? 

• Conditional Data Entry 
– USER (OR OTHER DATA SOURCE) HAS AN OPTIONAL DATA 

FIELD 

• Conditional Relationships 
– SOME X’S ARE RELATED TO Y’S, BUT NOT ALL 

• Conditional Properties 
– SOME X’S HAVE THE ATTRIBUTE BUT NOT ALL 

• Unidentified Entity Instances 
– RELATIONSHIPS EXIST, BUT INSTANCE IS ABSTRACT  

• Conditional Operators 
– THE OPERATOR IS NON-UNIFORM 

– PRODUCES NULLS TO FORCE UNIFORM OUTPUT 
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CONDITIONAL DATA ENTRY WITH 
DEFAULTS 

(HANDLING MISSING INFORMATION) 

Use for Some Conditional Data Entry, Namely: 

• When the Default Value Is  

– MEANINGFUL OR AN APPROPRIATE GUESS! 

OR 

– THE BEST ESTIMATE AND OTHERWISE HARMLESS  

(i.e.., NOTHING DEPENDS ON THE PARTICULAR VALUE) 

CRITICAL ASSUMPTION: 

ALL SUCH DATA IS INTENDED TO BE IMPROVED 
UPON OVER TIME! 
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CONDITIONAL RELATIONSHIPS 
 (HANDLING MISSING INFORMATION) 

EXAMPLE: Employee-managers 

EMP-MGR ( EMP#, ENAME, ESAL, MGR#) 

– AT LEAST ONE ROW CONTAINS A NULL FOR MGR# 

– ALL EMPLOYEES ARE NOT OF THE SAME ENTITY TYPE! 

• New approach: Create an associative relation 

EMP ( EMP#, ENAME, ESAL), MGR ( MGR#, ...), M_E ( EMP#, MGR# ) 

– ASYMMETRY PERMITS THE POSSIBILITY THAT SOME EMP# IS 
NOT MANAGED BY ANY MGR# 

– PHYSICALLY, I/O COST IS VERY LOW 

» ESPECIALLY IF M_E IS COVERED BY AN INDEX AND 
GENERALLY CACHED 
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CONDITIONAL RELATIONSHIPS 
 (HANDLING MISSING INFORMATION) 

• Recursive (Cyclic) Relations  

– IMPLY MULTIPLE ROLES ARE REPRESENTED IN A SINGLE 
ENTITY! 

– ASSOCIATION TABLES RESOLVE ANY N-CYCLE 

• Associate Relations Can Model Any Relationship! 

• Solves Referential Integrity Problems (“null” FKs) 

• Conditional Relationships May Imply Subsetting 

– SEE CONDITIONAL PROPERTIES 
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TYPES AND SUBTYPES 
 (HANDLING MISSING INFORMATION) 

• Logically, Each Subtype Is a Separate Relation  
– REMOVING A COLUMN REPRESENTS GENERALIZATION OF THE 

TYPE 

– NOT THE SAME OPERATION AS PROJECTION 

» MAKES NO STATEMENT ABOUT THE "MISSING" COLUMN! 

– CONVERSELY, A SUBTYPE IS A SPECIALIZATION  

• Eliminates Need for Conditional Operations 
– OUTER JOIN, OUTER UNION, etc. 

– THESE CONFUSE GENERALIZATION AND PROJECTION 

– MULTIPLE SELECTS SCALE BETTER 

» CONSIDER MULTIPLE STREAMS, INTERSPERSED FOR 
CERTAIN REPORT GENERATION TASKS 

– WILL NOT ADDRESS CONDITIONAL OPERATIONS FURTHER 
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CONDITIONAL PROPERTIES 
EXAMPLE 

 (HANDLING MISSING INFORMATION) 

• Suppose some employees are salaried and others 
are hourly 

 TRADITIONAL SCHEMA  

EMP( ENUM, ENAME, ESAL, ERATE) 

– BOTH ESAL AND ERATE ARE NULLABLE, BUT BOTH MAY NOT 
BE NULL FOR ANY ROW 

 BETTER LOGICAL SCHEMA  

SALARIED_EMP( ENUM, ENAME, ESAL) 

HOURLY_EMP( ENUM, ENAME, ERATE) 

• PROBLEM: MODELING TYPES AND SUBTYPES 
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TYPES AND SUBTYPES 
 (PHYSICAL DESIGN) 

Solution : One Physical Table With Two Views 
– DO THIS ONLY IF THE SUPERTYPE IS NEEDED 

– DEFINE AN EXTENDED DOMAIN 

» SPECIAL VALUE TO INDICATE AN ILLEGAL SALARY OR 
ILLEGAL HOURLY RATE PHYSICALLY 

» FOR THIS EXAMPLE, -1 IS NUMERIC AND EASILY EXCLUDED 
• NULLS DON’T WORK WELL! 

– ACCESS VIA PROJECTION / RESTRICTION VIEWS  

» NEVER LET THE APPLICATION SEE COLUMNS THAT DO NOT 
APPLY 

» ELIMINATE NON-SALARIED ROWS FROM SALARIED_EMP  

» ELIMINATE NON-HOURLY FROM HOURLY_EMP  
CREATE VIEW SALARIED_EMP AS SELECT ENUM, ENAME, ESAL FROM 

EMP WHERE  ERATE > -1 
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TYPES AND SUBTYPES 
 (PHYSICAL DESIGN) 

Solution : Two Physical Tables and One View 

– PRESUPPOSES ANY NEED TO MANIPULATE BOTH TABLES CAN 
BE DONE VIA A UNION VIEW 

» CREATE VIEW EMP AS SELECT ENUM, ENAME FROM 
SALARIED_EMP UNION SELECT ENUM, ENAME FROM 
HOURLY_EMP  

» BE CAREFUL ABOUT UNION VIEW UPDATE SUPPORT! 

– NOTE THAT THE UNION VIEW REQUIRES CONVERTING EACH 
RELATION TO THE SUPERTYPE 

– ELIMINATES THE NEED TO MANAGE ANY HIDDEN VALUES 

• Both Designs Improve User Understanding, 
Optimization, Storage Costs, I/O Costs 
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UNIDENTIFIED ENTITY INSTANCES 
 (HANDLING MISSING INFORMATION) 

Problem: “The Unassigned Employee” 
CONSIDER CERTAIN NEW HIRES 

– ALWAYS REPORTS TO SOMEONE, PERHAPS FOR 
REASSIGNMENT 

– ALWAYS RECEIVES PAYMENT AUTHORIZATION FROM 
SOMEONE 

– CONCEPTUALLY BELONGS TO AN ABSTRACT OR VIRTUAL 
DEPARTMENT 

– REPRESENTS FUNCTIONAL, ALBEIT ABSTRACT, BUSINESS 
ENTITY INSTANCE  

• Often modeled with null for department “value” 

Solution:  

Create a Value for the Abstract Department 
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WHERE WE ARE 

The Approach In Overview 

Scalability 

Data Independence 

Load Profiles 

Getting the Most Out of the Optimizer 

Denormalization 

Handling Missing Information 

• Optimal Storage Management 
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PART VII 
 

OPTIMAL STORAGE 
MANAGEMENT 
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DIMENSIONAL SCHEMAS 
 

FACTS, AND STARS AND 
(SNOW)FLAKES, OH MY! 
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DIMENSIONAL SCHEMAS 
THE WRONG WAY 

• Star Join Depends on Cartesian Products 
– FORMS CARTESIAN PRODUCT OF DIMENSION TABLES 

– CARTESIAN PRODUCTS DON’T SCALE 

– STAR SCHEMAS DON’T SCALE 

» TRUE EVEN WITH SPECIAL INDEXES AND JOIN 
ALGORITHMS 

– FACT TABLES GROW FASTER THAN DIMENSION TABLES 

» CREATES AN I/O IMBALANCE OR SKEW 

» REQUIRES A PHYSICAL RE-DESIGN 

• Fact Tables Are Often Multi-entity (Multi-fact!) 
– MANY COLUMNS ARE NULLABLE 

– OFTEN NO WELL-DEFINED PRIMARY KEY 

– FOREIGN KEYS OFTEN ADDED 
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DIMENSIONAL SCHEMAS 
THE RIGHT WAY 

• Star Schema Designs Aren’t Methodical 
– NO CORRECTNESS TESTS NOR DESIGN PROCEDURES  

– EASY TO VIOLATE INTEGRITY 

– EASY TO OBTAIN NONSENSE “FACTS” 

• The Right Stuff 
– LOGICAL DESIGN 

» BUT IGNORE IRRELEVANT DEPENDENCIES 

– PHYSICAL DESIGN 

» OPTIMIZE FOR MINIMUM I/O 

» PHYSICAL TABLES MUST BE DERIVED FROM LOGICAL 
SCHEMA 

• NO LOSS OF INFORMATION OR DEPENDENCIES 

» MOST IMPORTANT FOR A DATA WAREHOUSE! 
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DIMENSIONAL SCHEMAS 
THE RIGHT WAY 

• Get the Benefits Without Abandoning Reason! 

– FULLY NORMALIZE THE LOGICAL DESIGN 

– USE ONLY THE DEPENDENCIES THAT MATTER TO THE 
APPLICATION - RELATIVE NORMALIZATION 

» MANY DEPENDENCIES ARE NEVER SEEN BY THE 
APPLICATION 

» ATTRIBUTES MAY BE COMPLEX (A SET FOR A REPEATING 
GROUP) - BE CAREFUL! 

– OPTIMIZE THE PHYSICAL FOR MINIMUM STORAGE 

» HIGH SCAN COST OFTEN OUTWEIGHS JOIN COST 

– MAKE CERTAIN THE PHYSICAL IS COMPATIBLE WITH THE 
LOGICAL  
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PRE-AGGREGATION  
AND 

SUMMARY TABLES 
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AGGREGATION 

• Data Warehouses Often Require Aggregate Views 

• Dynamic Aggregation is Too Expensive 

• Precomputing Everything Is Too Expensive 

– MAY NEED MULTIPLE LEVELS OF AGGREGATION (BY DAY, 
WEEK, MONTH, YEAR) 

– MAY NEED MULTIPLE AGGREGATES (AVERAGE, SUM) 

– HORRIBLE FOR REFRESH OF A LARGE DATABASE 

• Same Issues Apply To OLTP Aggregation 
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AGGREGATION 

• Hierarchies of Aggregation 
– EACH LAYER IS A DERIVED, PARTIALLY STORED, DATABASE 

– DESIGN THE LAYER AS YOU WOULD ANY OTHER DATABASE 

» EACH LAYER MUST FOLLOW DB DESIGN RULES 

– EACH LAYER SCHEMA DERIVED FROM THE PREVIOUS 

– REFRESH EACH LAYER FROM THE PREVIOUS 

– HIGHER AND HIGHER LEVELS OF ABSTRACTION 

» BY PERIOD 

» BY AGGREGATION GROUP 

– BOUNDARY RULE 

» AN UPDATING TRANSACTION MUST NEVER UPDATE MORE 
THAN ONE LAYER! 

• CAN CREATE UNPREDICTABLE OUTCOMES 

• Multiple Hierarchies Are Possible 
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AGGREGATION 

• Create a Derived, Partially Stored, Database 
– DESIGN THE LAYER AS YOU WOULD ANY OTHER DATABASE 

– STORE GREATEST COMMON DENOMINATOR OF THE 
AGGREGATES  

– CREATE VIEWS TO COMPUTE FINAL AGGREGATES 
DYNAMICALLY 

– EXAMPLE:  

» STORE SUM AND COUNT  

» CAN THEN DYNAMICALLY AND CHEAPLY COMPUTE SUM, 
AVERAGE, AND MEAN VIEWS, AMONG OTHERS 

– DON’T STORE ALL AGGREGATIONS 

– TECHNIQUE NOW USED BY IBM DB2 (“SUMMARY INDEXES”) 
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PARTITIONING 
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DATABASE PARTITIONING 

• Partitioning A Database Into Multiple Groups of 
Tables 

• Some Reason for Associating Tables 
– CONSISTENT DATA SETS 

• Useful When Applications or Transactions Access 
Only One Database Partition at a Time 

• Useful If the Use of a Table Is Associated With Some 
Physical Resource (e.g., Node or CPU) 
– MIGHT CREATE A HOT SPOT IF DONE INCORRECTLY 

– NOT THE SAME AS SCHEMA PARTITIONING WHICH IS 
GENERALLY USED TO CONTROL HOT SPOTS 
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USER/APPLICATION 
DATABASE PARTITIONING 

• Partitioning By User 
– CLASSES OF USERS 

– COMMON AUTHORIZATIONS 

– COMMON TYPES OF TRANSACTIONS 

• Partitioning By Application 
– COMMON COLLECTION OF TABLES OR TABLE SUBSETS 

– COMMON SET OF TRANSACTIONS 

– MAY REQUIRE RESYNCHRONIZATION OF TABLE COPIES 

» Replication or batch copy management 

» Batch integrity checks 

» Work flow queue management 
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TABLE PARTITIONING 

• Design Tools Don’t Support 

• Partitioning of Tables  

• Based on Either Horizontal or Vertical Subsets  

• Horizontal Subsets Can Be Specified in Many Ways 
– RANGE OR KEY: PARTITION# = f( KEY VALUE RANGE) 

– EXPRESSION: PARTITION# = f( EXPRESSION VALUE RANGE) 

– HASH AND RANDOM: PARTITION# = HASH( KEY VALUE) 

– SCHEMA: ASSIGN TABLE TO PARTITION 

• Vertical Subsets Should Remove Contention and 
Reduce I/O 
– NON-LOSS PHYSICAL TABLE PROJECTIONS 

– LOCKING SHOULD BE ON THE ROW SUBSET (LOGICALLY) 
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TABLE PARTITIONING 

• Subset Partitioning and Subset Merging Should Be 
Online and Dynamic: 

 

 

• No Vendor Supports Automatic Most Frequently 
Used Partitioning!  

...YOU MAY BE ABLE TO SIMULATE 

• User-Defined Partitioning Functions Should Be 
Permitted. 

• Do Not Confuse Physical Partitioning Operations 
With Logical Database Operations. 
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PARTITIONING SCHEMES 
SELECTION 

Compute Relative Value  
– FOR A EACH TABLE T[ i ] 

– FOR EACH CANDIDATE PARTITIONING KEY K[ ijk ], OVER ALL j 
AND k 

– WEIGHT ( P) * TRANSACTION VOLUME (V) * NUMBER OF USES 
OF CANDIDATE ( N ) 

– W[ i ] = V[ i ] * P[ i ] * N[ i ] 

– IDENTIFY THE DISTRIBUTION OF CANDIDATE VALUES W 

Apply the Significance Test 
– A GOOD CANDIDATE FOR KEY PARTITIONING WILL BE VALUED 

AT LEAST TWO STANDARD DEVIATIONS ABOVE OTHERS 

• General Principle for Range Partitioning  
– BEST FOR APPLICATIONS THAT USE TRANSACTIONS CONFINED 

TO A RANGE OF KEY VALUES 
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PARTITIONING SCHEMES 
SELECTION 

Identify Opportunities for Expression Parititioning 
– INSTEAD OF SIMPLE KEYS 

– APPLY TO UNPARTITIONED TABLES 

– APPLY STEPS 1 AND 2 TO COMMON EXPRESSIONS 

Identify Opportunities for Hash and Random 
Partitioning  
– APPLY TO UNPARTITIONED TABLES 

– HOT SPOTS TABLES 

– PARTITIONED HASH JOINS TABLES  

– PARTICULARLY USEFUL FOR OLTP UPDATE TRANSACTIONS 

Use Schema Partitioning Where Appropriate 
– SMALL TO MEDIUM SIZE TABLES ACCESSED BY SCAN 

– TABLE ACCESSED WITH PARTITIONS ON A GIVEN NODE 
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PARTITIONS  
SIZE DETERMINATION 

Goal: Load Balance for I/O 
– ESSENTIALLY HORIZONTAL OR VERTICAL STRIPING 

– NUMBER PARTITIONS = MIN( NUMBER CPUs, CONTROLLERS ) 

Solution: 

Determine Relationship of Partition Key Value to I/O 
Distribution 
– CRUD AND PREDICTED OR MEASURED VOLUMETRICS 

– USE CURVE FITTING TO OBTAIN A POLYNOMIAL FUNCTION f() 

– EST. I/O = f( KEY_VALUE) 

– KEY VALUE DISTRIBUTIONS DETERMINE I/O MULTIPLIER 
FUNCTION g(KEY_VALUE) 

» DIVIDE BY ROWS PER BLOCK AND ROUND UP TO ESTIMATE 
I/O 
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PARTITIONS  
SIZE DETERMINATION 

Find I/O per partition 
– SUMMATION OVER A RANGE OF VALUES IN PARTITION 

– FORMALLY ESTIMATE VIA INTEGRATION 

» FIND TOTAL I/O OVER THE TIME PERIOD OF INTEREST 
(HOUR, DAY, WEEK, …) 

• THIS SHOULD INCLUDE ALL PEAKS 

» DIVIDE BY MIN(CPUs, CONTROLLERS) TO DETERMINE I/O 
“SIZE” PER PARTITION 

» I/O SIZE PER PARTITION  =  INTEGRAL FROM LOWER TO 
UPPER KEY VALUE BOUNDS 

» FIRST PARTITION LOWER BOUND IS LOWEST KEY VALUE 

» SOLVE FOR EACH CONSECUTIVE UPPER BOUND OF 
INTEGRATION IN TURN 
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PARTITIONS  
SIZE DETERMINATION 

Calculation Example 
ASSUMPTIONS 

f: EST. I/O = (KEY_VALUE) 

g: MULTIPLIER = 3 * KEY_VALUE 

KEY_VALUE RANGE = 0 - 1,000,000, 10 CONTROLLERS / CPUs 

TOTAL I/O = 6,000,000 

CALCULATION 

 f * g = 3 *  (KEY_VALUE)2 

INTEGRAL ( f * g ) = 6 * KEY_VALUE, INTEGRAL [ a, b ] = 6 * ( b - a ) 

I/O PER PARTITION = 6,000,000 / 10 PARTITIONS = 600,000 

1st PARTITION UPPER BOUND: 600,000 = 6 * b, SO b = 100,000 

2nd PARTITION UPPER BOUND: 600,000 = 6 * ( b - 100,000 ), SO b = 
200,000 
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REPLICATION 
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REPLICATION 

• Design Tools Don’t Support 

• A Combination of Controlled Redundancy and 
Partitioning 

• Always Address Partitioning Design First 

• Isolate and Treat “Local” Redundancy on a Per-
partition Basis 

• Treat “Distributed” Redundancy Last 

• Insist on Parallel Replication 
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REPLICATION 

• Generally Physical (Does Not Replicate SQL) 
– REQUIRES CARE IN ORDER OF APPLICATION 

– CAN CONSUME LARGE AMOUNT OF NETWORK I/O 

– CAN INCREASE LOGGING REQUIREMENTS 

• Log Based Replication 
– MINIMIZES CONTENTION DURING UPDATES 

– INHERENTLY ASYNCHRONOUS 

• Trigger Based Replication 
– TRIGGERS IN EXECUTION PATH LENGTH FOR ALL USERS 

– CAN BE SYNCHRONOUS OR ASYNCHRONOUS 

• Copy Management 
– CAN OFFER BULK TRANSFERS FOR REFRESH  
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REPLICATION 

• Controlled Redundancy  

– DEPENDS ON BEING ABLE TO SEPARATE READ FROM WRITE 

• Determine Number of “Read-only” Copies  

– OPTIMIZE I/O LOAD ACROSS NODES 

GOALS: 

– MINIMIZE INTERNODE I/O AND HARDWARE CONTENTION  

» WITHOUT OVERRUNNING CACHE 

METHOD: 

– ASSIGN A COPY IF REFRESH I/O IS LOWER THAN REPLICA I/O 

• Avoid Peer-peer Replication Except for Commutative 
Transactions 

– THAT IS, ORDER SHOULD NOT MATTER (same answer, any order) 
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Questions? 
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PLEASE FILL OUT YOUR 
EVALUATIONS... 

Thank you! 


